Citation: | QI Xiangyu, YAN Ling, DU Linxiu, LI Guanglong, ZHANG Peng, WANG Xiaohang. Fatigue Properties of CO2 Gas Shielded Welded Joint of High Strength and Toughness Medium-Mn Steel[J]. Materials and Mechanical Engineering, 2022, 46(7): 47-50,56. DOI: 10.11973/jxgccl202207009 |
[1] |
LIU H, DU L X, HU J, et al. Interplay between reversed austenite and plastic deformation in a directly quenched and intercritically annealed 0.04C-5Mn low-Al steel[J]. Journal of Alloys and Compounds, 2017, 695:2072-2082.
|
[2] |
齐祥羽,董营,胡军,等.高强韧低碳中锰钢的弯曲疲劳性能[J].东北大学学报(自然科学版),2018,39(12):1712-1716.
QI X Y,DONG Y,HU J,et al.Bending fatigue property of low-C medium-Mn steel with high strength and toughness[J]. Journal of Northeastern University (Natural Science),2018,39(12):1712-1716.
|
[3] |
HU J, DU L X, SUN G S, et al. The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel[J]. Scripta Materialia, 2015, 104:87-90.
|
[4] |
SUN C, LIU S L, MISRA R D K. et al. Inuence of intercritical tempering temperature on impact toughness of a quenched and tempered medium-Mn steel:Intercritical tempering versus traditional tempering[J]. Materials Science and Engineering:A, 2018, 711:484-491.
|
[5] |
HU J, DU L X, XU W, et al. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite[J]. Materials Characterization, 2018, 136:20-28.
|
[6] |
QI X Y, DU L X, HU J, et al. Enhanced impact toughness of heat affected zone in gas shield arc weld joint of low-C medium-Mn high strength steel by post-weld heat treatment[J]. Steel Research International, 2018, 89:1-8.
|
[7] |
中国机械工程学会焊接学会. 焊接手册[M]. 北京:机械工业出版社, 2007.
Welding Society of China Mechanical Engineering Society. Welding handbook[M]. Beijing:China Machine Press, 2007.
|
[8] |
齐祥羽,朱晓雷,胡军,等.低碳中锰Q690F高强韧中厚板生产技术[J].东北大学学报(自然科学版),2019,40(4):483-487.
QI X Y,ZHU X L,HU J,et al.Production technology of low-C medium-Mn Q690F high strength and toughness mid-thick steel plate[J]. Journal of Northeastern University (Natural Science),2019,40(4):483-487.
|
[9] |
钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
ZHONG Q P,ZHAO Z H. Fractography[M].Beijing:Higher Education Press,2006.
|
[10] |
HAN J,NAM J H,LEE Y K.The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel[J].Acta Materialia,2016,113:1-10.
|
[11] |
QI X Y, DU L X, HU J, et al. High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure[J]. Materials Science and Engineering:A, 2018, 718:477-482.
|
[12] |
齐祥羽. 高强中锰钢焊接热循环下的组织性能与断裂行为[D]. 沈阳:东北大学, 2019.
QI X Y. Microstructure and properties of high strength medium manganese steel under welding thermal cycle and its fracture behavior[D]. Shenyang:Northeastern University, 2019.
|
[13] |
霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
HUO L X. Fracture behavior and evaluation of welded structures[M].Beijing:China Machine Press,2000.
|
[14] |
XU W,WESTERBAAN D,NAYAK S S,et al.Tensile and fatigue properties of fiber laser welded high strength low alloy and DP980 dual-phase steel joints[J].Materials and Design,2012,43:373-383.
|
[15] |
BUSSU G,IRVING P E.The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints[J]. International Journal of Fatigue,2003,25(1):77-88.
|
[16] |
MA N S, CAI Z P, HUANG H, et al. Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment[J]. Materials and Design, 2015, 88(25):1296-1309.
|
[17] |
CHENG X H,FISHER J W,PRASK H J,et al.Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures[J]. International Journal of Fatigue,2003,25(9/10/11):1259-1269.
|