• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LI Yuchen, SHI Xianbo, YAN Wei, SHAN Yiyin, REN Yi, SHEN Minggang, WANG Yiyong. High Temperature Plasticity of X65 Grade Cu-bearing Pipeline Steel[J]. Materials and Mechanical Engineering, 2022, 46(7): 90-94. DOI: 10.11973/jxgccl202207016
Citation: LI Yuchen, SHI Xianbo, YAN Wei, SHAN Yiyin, REN Yi, SHEN Minggang, WANG Yiyong. High Temperature Plasticity of X65 Grade Cu-bearing Pipeline Steel[J]. Materials and Mechanical Engineering, 2022, 46(7): 90-94. DOI: 10.11973/jxgccl202207016

High Temperature Plasticity of X65 Grade Cu-bearing Pipeline Steel

More Information
  • Received Date: March 09, 2021
  • Revised Date: January 26, 2022
  • The high temperature tensile test of X65 grade low carbon low nickel Cu-bearing pipeline steel containing 1.8wt% copper and 1.0wt% nickel was carried out with Gleeble-3800 thermal simulation testing machine to study the high temperature plasticity at different temperatures (850-1 300℃). The results show that the tensile strength of the Cu-bearing pipeline steel showed an overall downward trend with increasing test temperature; the tensile strength at 850℃ reached 105 MPa, while the tensile strength at 1 300℃ was reduced to about 30 MPa. With increasing test temperature, the percentage reduction of area of the Cu-bearing pipeline steel showed an overall increase trend. When the test temperature was higher than 1 050℃, the percentage reduction of area was above 80%, showing good high temperature plasticity; the percentage reduction of area at 850-1 000℃ was about 60%, indicating the large deformation of the pipeline steel should be avoided in the range of 850-1 000℃. When the test temperature was higher than 1 050℃, the improvement of plasticity was related to dynamic recrystallization. In the continuous casting temperature range (1 100-1 250℃), the Cu-bearing pipeline steel had excellent high temperature plasticity, which could ensure the metallurgical quality of the continuous casting billet.
  • [1]
    史显波,杨春光,严伟,等.管线钢的微生物腐蚀[J].中国腐蚀与防护学报,2019,39(1):9-17.

    SHI X B,YANG C G,YAN W,et al.Microbiologically influenced corrosion of pipeline steels[J].Journal of Chinese Society for Corrosion and Protection,2019,39(1):9-17.
    [2]
    杨柯,史显波,严伟,等.新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J].金属学报,2020,56(4):385-399.

    YANG K,SHI X B,YAN W,et al.Novel Cu-bearing pipeline steels:A new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels[J].Acta Metallurgica Sinica,2020,56(4):385-399.
    [3]
    朱露珊.Fe-Cu-Ni合金中富Cu团簇早期析出行为的分子动力学模拟研究[D].上海:上海大学,2014. ZHU L S.Molecular dynamics simulation of Cu precipitation at an early stage in Fe-Cu-Ni alloy[D].Shanghai:Shanghai University,2014.
    [4]
    刘庆冬.HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子探针层析技术研究[D].上海:上海大学,2012.

    LIU Q D.Atom probe tomography study on copper precipitation strengthening and reverse austenite toughening in HSLA ferritic steel[D].Shanghai:Shanghai University,2012.
    [5]
    杨才福,苏航,李丽,等.加热工艺对含铜钢表面氧化的影响[J].钢铁研究学报,2007,19(10):48-52.

    YANG C F,SU H,LI L,et al.Effect of heating process on surface oxidation of copper-bearing steel[J].Journal of Iron and Steel Research,2007,19(10):48-52.
    [6]
    杨才福,苏航,李丽,等.Cu、Ni在含铜时效钢表面氧化层中的富集[J].钢铁,2007,42(4):57-60.

    YANG C F,SU H,LI L,et al.Enrichment of Cu,Ni in surface oxidation layer of copper-bearing age-hardening steel[J].Iron & Steel,2007,42(4):57-60.
    [7]
    郑桂芸.A105连铸坯的高温塑性研究[J].连铸,2016,41(2):57-61.

    ZHENG G Y.Research on hot ductility behaviour of A105 steel continuous casting billet[J].Continuous Casting,2016,41(2):57-61.
    [8]
    王志刚,余驰斌,鲍思前,等.Q345C连铸坯高温热塑性的研究[J].南方金属,2010(5):22-25.

    WANG Z G,YU C B,BAO S Q,et al.A study of the thermal plasticity of Q345C steel slab[J].Southern Metals,2010(5):22-25.
    [9]
    张永军,韩静涛,孔俊其,等.ER70S-6连铸坯高温塑性研究[J].金属材料与冶金工程,2009,37(5):3-6,56.

    ZHANG Y J,HAN J T,KONG J Q,et al.Research on high temperature ductility of ER70S-6 continuous cast slabs[J].Metal Materials and Metallurgy Engineering,2009,37(5):3-6,56.
    [10]
    张敏,任晓龙,邢奎,等.低碳贝氏体钢双面埋弧焊接头的组织和低温韧性[J].材料研究学报,2015,29(10):737-743.

    ZHANG M,REN X L,XING K,et al.Microstructure and low temperature toughness of weld joints prepared by double-sided submerged arc welding for low carbon bainite steel[J].Chinese Journal of Materials Research,2015,29(10):737-743.
    [11]
    朱诚意,吴炳新,张志成,等.高品质GCr15轴承钢二次精炼过程中夹杂物的演变规律[J].重庆大学学报,2015,38(5):89-97.

    ZHU C,WU B X,ZHANG Z C,et al.The evolution of inclusions in high quality GCr15 bearing steels during secondary refining process[J].Journal of Chongqing University,2015,38(5):89-97.
    [12]
    叶浩,严红革,苏斌,等.真空感应熔炼水冷铜模铸造对2024铝合金形变热处理组织及性能的影响[J].机械工程材料,2013,37(3):11. YE H,YAN H G,SU B,et al.Effects of vacuum induction melting and copper water-cooled mould casting on thermo-mechanical treatment microstructure and properties of 2024 aluminum alloy[J].Materials for Mechanical Engineering,2013,37(3):11.
    [13]
    郭成,程羽,尚春阳,等.SiC颗粒增强铝合金基复合材料断裂与强化机理[J].复合材料学报,2001,18(4):54-57.

    . GUO C,CHENG Y,SHANG C Y,et al.Mechanisms on fracture and strengthening of aluminium alloy matrix composites reinforced with sic particles[J].Acta Materiae Compositae Sinica,2001,18(4):54-57.
    [14]
    MINTZ B,ABUSHOSHA R,JONAS J J.Influence of dynamic recrystallisation on the tensile ductility of steels in the temperature range 700 to 1150℃[J].ISIJ International,1992,32(2):241-249.
    [15]
    陶素芬,王福明,严国卫,等.A105钢的高温热塑性[J].材料热处理学报,2013,34(12):96-102.

    TAO S F,WANG F M,YAN G W,et al.Hot ductility of A105 steel[J].Transactions of Materials and Heat Treatment,2013,34(12):96-102.
    [16]
    林万明,卫英慧,杜华云,等.纯铜表面纳米化对镍扩散的影响[J].金属热处理,2009,34(11):14-17.

    LIN W M,WEI Y H,DU H Y,et al.Effects of surface nanocrystallization on diffusion of nickel[J].Heat Treatment of Metals,2009,34(11):14-17.
    [17]
    SHIBATA K. Surface hot shortness due to Cu(+Sn) and its suppression by physical metallurgy[J]. Current Advances in Materials and Processes, 2003, 16(6):1391-1394.

Catalog

    Article views (2) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return