Citation: | YANG Yong, WANG Jiaxin, WANG Bin, YAO Yulong. Comparison of Microstructure and Hardness of Phosphor Copper Ball Produced by Rolling and Upsetting Processes[J]. Materials and Mechanical Engineering, 2022, 46(8): 53-57,67. DOI: 10.11973/jxgccl202208009 |
[1] |
张忠科,李昭,赵长忠,等.微晶磷铜球中磷对电镀的影响[J].有色金属工程,2020,10(7):8-13.
ZHANG Z K,LI Z,ZHAO C Z,et al.Effect of phosphorus on electroplating in microcrystalline phosphorus copper balls[J].Nonferrous Metals Engineering,2020,10(7):8-13.
|
[2] |
王宝雨,王少臣,胡正寰,等.冷斜轧磷铜球温度场的数值模拟[J].锻压技术,2008,33(4):47-50.
WANG B Y,WANG S C,HU Z H,et al.Numerical simulation on temperature field of phosphor copper ball during cold skew rolling[J].Forging&Stamping Technology,2008,33(4):47-50.
|
[3] |
胡晓斌,王宝雨.斜轧磷铜球轧制力研究[J].锻压技术,2009,34(3):75-77.
HU X B,WANG B Y.Experiment of two grooves skewing rolling phosphor copper ball[J].Forging&Stamping Technology,2009,34(3):75-77.
|
[4] |
周永平,王宝雨,胡正寰.斜轧磷铜球成形过程的数值模拟[J].北京科技大学学报,2008,30(2):161-164.
ZHOU Y P,WANG B Y,HU Z H.Numerical simulation of copper ball forming process during skew rolling[J].Journal of University of Science and Technology Beijing,2008,30(2):161-164.
|
[5] |
HU Z H,WANG B Y,ZHENG Z H.Research and industrialization of near-net rolling technology used in shaft parts[J].Frontiers of Mechanical Engineering,2018,13(1):17-24.
|
[6] |
隋毅,梁强.组合形活塞销冷镦挤成形工艺[J].锻压技术,2020,45(1):109-113.
SUI Y,LIANG Q.Cold upsetting-extruding process for combination piston-pins[J].Forging&Stamping Technology,2020,45(1):109-113.
|
[7] |
赵长忠,李昭,王世卓,等.微晶磷铜球生产中校直与送进装置的研究[J].冶金管理,2020(17):29-30.
ZHAO C Z,LI Z,WANG S Z,et al.Research on the straightening and feeding device in the production of microcrystalline phosphor copper balls[J].China Steel Focus,2020(17):29-30.
|
[8] |
蒋英.热处理对磷铜合金组织性能影响研究[J].世界有色金属,2018(1):217-218.
JIANG Y.Study on heat treatment on Microstructure and properties of copper alloys influence[J].World Nonferrous Metals,2018(1):217-218.
|
[9] |
冯孟奇,贾淑果,李韶林,等.铜/碳复合材料的研究进展[J].材料热处理学报,2020,41(12):25-36.
FENG M Q,JIA S G,LI S L,et al.Research progress of Cu/C composites[J].Transactions of Materials and Heat Treatment,2020,41(12):25-36.
|
[10] |
朱叶.非调质曲轴钢S38MnSiV低温轧制技术研究[J].铸造技术,2020,41(10):982-985.
ZHU Y.Research on low temperature rolling technology of non-quenched crankshaft S38MnSiV steel[J].Foundry Technology,2020,41(10):982-985.
|
[11] |
李炯辉.金属材料金相图谱[M].北京:机械工业出版社,2006.
LI J H.Metallographic atlas of metallic materials[M].Beijing:China Machine Press,2006.
|
[12] |
杨洋,董利民,关少轩,等.冷镦和热镦对TC16合金组织和性能的影响[J].中国有色金属学报,2010,20(增刊1):107-112.
YANG Y,DONG L M,GUAN S X,et al.Effects of cold and hot upset on microstructures and properties of TC16 titanium alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(S1):107-112.
|
[13] |
胡正寰,杨翠苹,王宝雨.我国轴类零件轧制技术进展[J].机械工程学报,2012,48(18):7-12.
HU Z H,YANG C P,WANG B Y.Development of part rolling technology in China[J].Journal of Mechanical Engineering,2012,48(18):7-12.
|
[14] |
王宝雨,胡发国,胡福生,等.楔横轧轧件滚动半径变化规律的试验研究[J].机械工程学报,2010,46(24):22-27.
WANG B Y,HU F G,HU F S,et al.Experimental research on rolling radius of formed part for cross wedge rolling[J].Journal of Mechanical Engineering,2010,46(24):22-27.
|
[15] |
张忠科,郑江辉,赵早龙,等.基于PLC的磷铜球液压成型机高精度控制系统研究[J].制造业自动化,2021,43(4):85-89.
ZHANG Z K,ZHENG J H,ZHAO Z L,et al.Research on high precision control system for hydraulic forming ma chine of phosphor copper ball based on PLC[J].Manufacturing Automation,2021,43(4):85-89.
|
[1] | MA Jianjun, LIU Xiao, WANG Heng. Corrosion Fatigue Crack Growth Rate Theoretical Model ofE690 Steel under Mechanics-Electrochemistry Interaction[J]. Materials and Mechanical Engineering, 2022, 46(6): 57-63. DOI: 10.11973/jxgccl202206010 |
[2] | GUO Xiaojun, SU Xiao, HU Dianyin. Numerical Simulation of Laser Shock Peening for Superalloy and Fatigue Life Prediction[J]. Materials and Mechanical Engineering, 2021, 45(10): 97-103. DOI: 10.11973/jxgccl202110013 |
[3] | FENG Kangtun, ZHAI Jiayou, YANG Kai, ZHANG Pingze, GAO Di. Effect of Ceramic Shot Peening on Fatigue Properties of TC18 TitaniumAlloy by Laser Additive Manufacturing[J]. Materials and Mechanical Engineering, 2020, 44(11): 92-96,101. DOI: 10.11973/jxgccl202011016 |
[4] | ZHANG Chunguo, LIU Qiankun, LI Guangshang, LIU Rongwei. Effect of Prefabricated Crack Arrest Line on Fatigue Crack Growth Behavior of Industrial Pure Iron DT4C[J]. Materials and Mechanical Engineering, 2019, 43(12): 7-11,18. DOI: 10.11973/jxgccl201912002 |
[5] | SHENG Wei, LIU Tianqi, MA Shaojun, CHEN Tianyun. Fatigue Crack Growth Behavior of 300M Steel under Different Conditions[J]. Materials and Mechanical Engineering, 2017, 41(6): 17-19. DOI: 10.11973/jxgccl201706005 |
[6] | YANG Yong-he, LI Luo, XU Zhen, CHEN Xu. Fatigue Crack Growth Behavior of X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2015, 39(8): 75-78. DOI: 10.11973/jxgccl201508016 |
[7] | YAN Fang-fang, LI Wen-xing. Estimation of Aluminium Alloy Fracture Toughness by Fatigue Crack Growth Rate[J]. Materials and Mechanical Engineering, 2014, 38(12): 105-108. |
[8] | WANG Qiang, QIAO Ming-jie, ZHANG Wei, HUANG Li-jun. Effect of Shot Peening on Compressive Residual Stress Fields and Fatigue Life for TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2012, 36(12): 53-56. |
[9] | XU Tian-han, FENG Yao-rong, SONG Sheng-yin, JIN Zhi-hao, WANG Dang-hui. Effect of Stress Ratio on Fatigue Crack Growth Behavior of J55 Drilling Casing Steel[J]. Materials and Mechanical Engineering, 2009, 33(11): 19-23. |
[10] | SONG Dong-li, JIAO Si-hai. Validation of Hardness Prediction Mathematic Models[J]. Materials and Mechanical Engineering, 2008, 32(3): 29-31. |