• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
JIANG Bingya, CAO Tieshan, CHENG Congqian, ZHAO Jie. Research Progress on Strain Induced Precipitation Model and Its Application of Heat Resistant Steel[J]. Materials and Mechanical Engineering, 2022, 46(9): 1-10. DOI: 10.11973/jxgccl202209001
Citation: JIANG Bingya, CAO Tieshan, CHENG Congqian, ZHAO Jie. Research Progress on Strain Induced Precipitation Model and Its Application of Heat Resistant Steel[J]. Materials and Mechanical Engineering, 2022, 46(9): 1-10. DOI: 10.11973/jxgccl202209001

Research Progress on Strain Induced Precipitation Model and Its Application of Heat Resistant Steel

More Information
  • Received Date: April 05, 2021
  • Revised Date: May 11, 2022
  • Heat resistant steels are a key material serving in thermal power, nuclear power and chemical industry fields under high temperature conditions. The existence of precipitates during service has an important influence on the thermal strength, toughness, microstructure stability and high temperature oxidation resistance of heat resistant steels, and the strain causes a large number of dislocations in the matrix, which promotes the nucleation of precipitates. The main alloying elements and precipitates of heat resistant steels are introduced, and the research progress on strain induced precipitation model for heat resistant steels is reviewed from three aspects: strain induced nucleation, strain induced precipitation growth and coarsening, and the engineering application of strain induced precipitation model. The future research direction of the strain induced precipitation model is prospected.
  • [1]
    谢锡善.我国高温材料的应用与发展[J].机械工程材料,2004,28(1):2-8.

    XIE X S.The development and application of high temperature materials in China[J].Materials for Mechanical Engineering,2004,28(1):2-8.
    [2]
    林富生,王治政,王宝忠,等.中国电站用耐热钢及合金的研制、应用与发展[J].动力工程学报,2010,30(4):235-244.

    LIN F S,WANG Z Z,WANG B Z,et al.Research,application and development of domestic heat-resistant steels and alloys for power plants[J].Journal of Chinese Society of Power Engineering,2010,30(4):235-244.
    [3]
    胡正飞,杨振国.高铬耐热钢的发展及其应用[J].钢铁研究学报,2003,15(3):60-65.

    HU Z F,YANG Z G.Development and application of high chromium heat-resistant steel[J].Journal of Iron and Steel Research,2003,15(3):60-65.
    [4]
    WÄRNER H,CALMUNGER M,CHAI G C,et al.Fracture and damage behavior in an advanced heat resistant austenitic stainless steel during LCF,TMF and CF[J].Procedia Structural Integrity,2018,13:843-848.
    [5]
    ZHANG Y B,ZOU D N,WEI T Y,et al.Microstructural evolution and precipitation behavior of the 0.1C-18Cr-1Al-1Si ferritic heat-resistant stainless steel during hot deformation[J].Materials Research Express,2020,7(3):036513.
    [6]
    WILSHIRE B,WILLIS M.Mechanisms of strain accumulation and damage development during creep of prestrained 316 stainless steels[J].Metallurgical and Materials Transactions A,2004,35(2):563-571.
    [7]
    GROT A S,SPRUIELL J E.Microstructural stability of titanium-modified type 316 and type 321 stainless steel[J].Metallurgical Transactions A,1975,6(11):2023-2030.
    [8]
    HONG S M,KIM M Y,MIN D J,et al.Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 Austenite stainless steel[J].Materials Characterization,2014,94:7-13.
    [9]
    QIAO S F,WEI Y H,XU H L,et al.The evolution behavior of second phases during long-term creep rupture process for modified 9Cr-1.5Mo-1Co steel welded joint[J].Materials Characterization,2019,151:318-331.
    [10]
    许航,李玉平,方旭东,等.HR3C耐热钢在高温蠕变过程中微观组织演变分析[J].热加工工艺,2017,46(6):107-111.

    XU H,LI Y P,FANG X D,et al.Analysis on microstructure evolution of HR3C heat resistant steel during high-temperature creep test[J].Hot Working Technology,2017,46(6):107-111.
    [11]
    于鸿垚,董建新,谢锡善.新型奥氏体耐热钢HR3C的研究进展[J].世界钢铁,2010,10(2):42-49.

    YU H Y,DONG J X,XIE X S.Research development of new austenitic heat-resistant steel HR3C[J].World Iron & Steel,2010,10(2):42-49.
    [12]
    刘入维,肖平,钟犁,等.700 ℃超超临界燃煤发电技术研究现状[J].热力发电,2017,46(9):1-7.

    LIU R W,XIAO P,ZHONG L,et al.Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology[J].Thermal Power Generation,2017,46(9):1-7.
    [13]
    XU Y T,LI W,WANG M J,et al.Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging[J].Acta Materialia,2019,175:148-159.
    [14]
    CHEN G A,YANG W Y,GUO S Z,et al.Strain-induced precipitation of Nb(CN) during deformation of undercooled austenite in Nb-microalloyed HSLA steels[J].Materials Science Forum,2005,475/476/477/478/479:105-108.
    [15]
    ZHOU Y H,LIU C X,LIU Y C,et al.Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging[J].International Journal of Minerals,Metallurgy,and Materials,2016,23(3):283-293.
    [16]
    迟成宇,于鸿垚,谢锡善.600 ℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展[J].世界钢铁,2012,12(4):50-65.

    CHI C Y,YU H Y,XIE X S.Research and development of austenitic heat-resistant steels for 600 ℃ superheat/reheater tubes of USC power plant boilers[J].World Iron & Steel,2012,12(4):50-65.
    [17]
    李太江,刘福广,范长信,等.超超临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J].热加工工艺,2010,39(14):43-46.

    LI T J,LIU F G,FAN C X,et al.Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J].Hot Working Technology,2010,39(14):43-46.
    [18]
    WANG J Z,LIU Z D,BAO H S,et al.Evolution of precipitates of S31042 heat resistant steel during 700 ℃ aging[J].Journal of Iron and Steel Research,International,2013,20(10):113-121.
    [19]
    WANG W,WANG Z W,LI W S,et al.Evolution of M23C6 phase in HR3C steel aged at 650 ℃[J].Materials at High Temperatures,2016,33(3):276-282.
    [20]
    方园园,赵杰,李晓娜.HR3C钢高温时效过程中的析出相[J].金属学报,2010,46(7):844-849.

    FANG Y Y,ZHAO J,LI X N.Precipitates in HR3C steel aged at high temperature[J].Acta Metallurgica Sinica,2010,46(7):844-849.
    [21]
    KAIBYSHEV R O,SKOROBOGATYKH V N,SHCHENKOVA I A.Formation of the Z-phase and prospects of martensitic steels with 11% Cr for operation above 590 ℃[J].Metal Science and Heat Treatment,2010,52(3/4):90-99.
    [22]
    FEDOSEEVA A,DUDOVA N,KAIBYSHEV R.Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel[J].Materials Science and Engineering:A,2016,654:1-12.
    [23]
    FEDOSEEVA A,DUDOVA N,KAIBYSHEV R.Effect of tungsten on a dispersion of M(C,N) carbonitrides in 9% Cr steels under creep conditions[J].Transactions of the Indian Institute of Metals,2016,69(2):211-215.
    [24]
    邢佳,卫英慧,侯利锋,等.HR3C不锈钢时效过程中铌的析出规律及其对性能的影响[J].钢铁研究学报,2014,26(12):54-59.

    XING J,WEI Y H,HOU L F,et al.Rule for niobium precipitation during aging treatment and its influence on properties of stainless steel HR3C[J].Journal of Iron and Steel Research,2014,26(12):54-59.
    [25]
    ZHOU Y H,LI Y M,LIU Y C,et al.Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging[J].Journal of Materials Research,2015,30(23):3642-3652.
    [26]
    谢奇迈,马庆爽,张海莲,等.新型含铝奥氏体耐热钢中合金元素作用机制研究现状[J].中国冶金,2022,32(7):1-11.

    XIE Q M,MA Q S,ZHANG H L,et al.Research status of elements alloying mechanism in heat-resistant austenitic steel containing aluminum[J].China Metallurgy,2022,32(7):1-11.
    [27]
    闫超鹏,孙锋,单爱党,等.超超临界火电机组用铁素体耐热钢的研究现状[J].机械工程材料,2008,32(12):1-4.

    YAN C P,SUN F,SHAN A D,et al.Research progress of ferritic heat-resistant steels used for ultra-super critical steam turbine units[J].Materials for Mechanical Engineering,2008,32(12):1-4.
    [28]
    李慧,方旭东,徐芳泓,等.典型奥氏体耐热钢的析出行为研究[J].热加工工艺,2020,49(14):6-10.

    LI H,FANG X D,XU F H,et al.Study on precipitation behavior of typical austenitic heat resistant steels[J].Hot Working Technology,2020,49(14):6-10.
    [29]
    ZHOU Y H,LIU Y C,ZHOU X S,et al.Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel[J].Journal of Materials Research,2015,30(13):2090-2100.
    [30]
    王锐,曹铁山,赵杰.冷变形对Sanicro 25钢时效过程中组织和性能的影响[J].金属热处理,2019,44(增刊1):575-580.

    WANG R,CAO T S,ZHAO J.Effect of cold deformation on microstructure and properties of Sanicro 25 steel during aging[J].Heat Treatment of Metals,2019,44(S1):575-580.
    [31]
    GÓMEZ-RAMÍREZ R,POUND G M.Nucleation of a second solid phase along dislocations[J].Metallurgical Transactions,1973,4(6):1563-1570.
    [32]
    CAHN J W.Nucleation on dislocations[J].Acta Metallurgica,1957,5(3):169-172.
    [33]
    LIU W J,JONAS J J.Characterisation of critical nucleus/matrix interface:Application to Cu-Co alloys and microalloyed austenite[J].Materials Science and Technology,1989,5(1):8-12.
    [34]
    DUTTA B,VALDES E,SELLARS C M.Mechanism and kinetics of strain induced precipitation of Nb(C,N) in austenite[J].Acta Metallurgica et Materialia,1992,40(4):653-662.
    [35]
    RUSSELL K C.Nucleation in solids:The induction and steady state effects[J].Advances in Colloid and Interface Science,1980,13(3/4):205-318.
    [36]
    ZUROB H S,HUTCHINSON C R,BRECHET Y,et al.Modeling recrystallization of microalloyed austenite:Effect of coupling recovery,precipitation and recrystallization[J].Acta Materialia,2002,50(12):3077-3094.
    [37]
    OKAGUCHI S,HASHIMOTO T.Computer model for prediction of carbonitride precipitation during hot working in Nb-Ti bearing HSLA steels[J].ISIJ International,1992,32(3):283-290.
    [38]
    DUTTA B,SELLARS C M.Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite[J].Materials Science and Technology,1987,3(3):197-206.
    [39]
    JUNG J G,PARK J S,KIM J,et al.Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel[J].Materials Science and Engineering:A,2011,528(16/17):5529-5535.
    [40]
    MA X P,MIAO C L,LANGELIER B,et al.Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel[J].Materials & Design,2017,132:244-249.
    [41]
    ZUROB H.Effects of precipitation ,recovery and recrystallization on the microstructural evolution of microalloyed austenite [D].Hamilton: McMaster University,2003.
    [42]
    吴志方,刘超.二元互不溶体系中第二相颗粒的Ostwald熟化[J].材料导报,2016,30(5):23-26.

    WU Z F,LIU C.Ostwald ripening of secondary phase particles in binary immiscible systems[J].Materials Review,2016,30(5):23-26.
    [43]
    BALDAN A.Progress in Ostwald ripening theories and their applications in nickel-base super alloys[J].Journal of Materials Science,2002,37:2379-2405.
    [44]
    LIU B,ZENG H C.Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J].Small,2005,1(5):566-571.
    [45]
    LIFSHITZ I M,SLYOZOV V V.The kinetics of precipitation from supersaturated solid solutions[J].Journal of Physics and Chemistry of Solids,1961,19(1/2):35-50.
    [46]
    DESCHAMPS A,BRECHET Y.Influence of predeformation and ageing of an Al-Zn-Mg alloy: II.Modeling of precipitation kinetics and yield stress[J].Acta Materialia,1998,47(1):293-305.
    [47]
    LIU W J.A new theory and kinetic modeling of strain-induced precipitation of Nb(CN) in microalloyed austenite[J].Metallurgical and Materials Transactions A,1995,26(7):1641-1657.
    [48]
    DUTTA B,PALMIERE E J,SELLARS C M.Modelling the kinetics of strain induced precipitation in Nb microalloyed steels[J].Acta Materialia,2001,49(5):785-794.
    [49]
    ZENER C.Theory of growth of spherical precipitates from solid solution[J].Journal of Applied Physics,1949,20(10):950-953.
    [50]
    张盼盼,程晓农,罗锐,等.新型Fe-Cr-Ni耐热合金的应变诱导析出行为[J].钢铁研究学报,2019,31(1):64-71.

    ZHANG P P,CHENG X N,LUO R,et al.Strain-induced precipitation behavior of new Fe-Cr-Ni heat-resistant alloy[J].Journal of Iron and Steel Research,2019,31(1):64-71.
    [51]
    MASUDA T,HIROSAWA S,HORITA Z,et al.Experimental and computational studies of competitive precipitation behavior observed in microstructures with high dislocation density and ultra-fine grains[J].Materials Science Forum,2012,706/707/708/709:1787-1792.
    [52]
    RADIS R,KOZESCHNIK E.Numerical simulation of NbC precipitation in microalloyed steel[J].Modelling and Simulation in Materials Science and Engineering,2012,20(5):055010.
    [53]
    ZHANG Y Y,JIN W,HAO X Z,et al.Improving elevated-temperature strength of an Al-Mn-Si alloy by strain-induced precipitation[J].Metals,2018,8(6):446.
    [54]
    CHEN S P,KUIJPERS N C W,VAN DER ZWAAG S.Effect of microsegregation and dislocations on the nucleation kinetics of precipitation in aluminium alloy AA3003[J].Materials Science and Engineering:A,2003,341(1/2):296-306.
    [55]
    KANG K B,KWON O,LEE W B,et al.Effect of precipitation on the recrystallization behavior of a Nb containing steel[J].Scripta Materialia,1997,36(11):1303-1308.
    [56]
    YANG Y,LI T R,JIA T,et al.Precipitation kinetics of complex precipitate in multicomponent systems[J].Journal of Iron and Steel Research International,2018,25(10):1086-1093.
    [57]
    LLANOS L,PEREDA B,PAUL G,et al.Physical modelling of the interaction between softening and Nb (C,N) strain-induced precipitation in high-Mn steels[J].Materials Science Forum,2013,762:398-404.
    [58]
    LIANG S L,WANG X,ZUROB H S.NbC precipitation during multi-pass deformation of a nickel-based model alloy:Experiments and modelling[J].Materials Science and Engineering:A,2020,772:138748.
    [59]
    PERRARD F,DESCHAMPS A,MAUGIS P.Modelling the precipitation of NbC on dislocations in α-Fe[J].Acta Materialia,2007,55(4):1255-1266.

Catalog

    Article views (2) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return