• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
WANG Dan, ZHONG Qingdong, YANG Jian, ZHANG Shujian. Microstructure and Corrosion Resistance in Cl- Containing Environment of Three-Composition Medium Carbon Alloy Steel[J]. Materials and Mechanical Engineering, 2022, 46(9): 16-23. DOI: 10.11973/jxgccl202209003
Citation: WANG Dan, ZHONG Qingdong, YANG Jian, ZHANG Shujian. Microstructure and Corrosion Resistance in Cl- Containing Environment of Three-Composition Medium Carbon Alloy Steel[J]. Materials and Mechanical Engineering, 2022, 46(9): 16-23. DOI: 10.11973/jxgccl202209003

Microstructure and Corrosion Resistance in Cl- Containing Environment of Three-Composition Medium Carbon Alloy Steel

More Information
  • Received Date: June 12, 2021
  • Revised Date: July 16, 2022
  • Three test steels with composition (mass fraction/%) of 0.35C,0.9Mn, 3.5Cr, 0.6Si, 0.3V, 0.05Ti (namely N1), 0.35C, 1.2Mn, 2.0Cr, 0.8Si, 0.4V, 0.11Ti (namely N2) and 0.40C,0.6Mn, 3.5Cr, 0.8Si, 0.1V, 0.23Ti (namely N3) were designed based on 40Cr steel composition, and the microstructure, electrochemical properties and corrosion resistance in 3.5wt% NaCl solution of test steels were studied. The results show that N3 test steel had the smallest grain size and the narrowest martensite lath bundle, followed by N1 test steel and N2 test steel. N1 test steel had the highest open circuit potential, the highest free-corrosion potential, the lowest free-corrosion current density, the largest absolute value of the maximum phase angle, and the largest radius of the capacitive arc. After soaking in NaCl solution for 24 h, localized pitting corrosion occurred on the surface of N1 and N3 test steel, while uniform corrosion occurred on N2 test steel. N1 test steel had high chromium content, moderate grain size, the highest surface corrosion product compactness and the best corrosion resistance.
  • [1]
    LU K.The future of metals[J].Science,2010,328(5976):319-320.
    [2]
    芦晓辉,高珊,张才毅.我国船舶与海工用特种钢材的发展[J].金属加工(热加工),2015(6):8-11.

    LU X H,GAO S,ZHANG C Y.Development of special steels for ship and marine engineering in China [J].MW Metal Forming,2015(6):8-11.
    [3]
    秦明,刘芳媛,王筱梅,等.海洋环境中碳钢表面锈层的性质及研究方法[J].物流工程与管理,2015,37(12):90-91,114.

    QIN M,LIU F Y,WANG X M,et al.Research methods and characteristics of rusted carbon steel in marine environment[J].Logistics Engineering and Management,2015,37(12):90-91,114.
    [4]
    马涛,张肖飞,华晓春,等.AISI4340高强钢在含氧和/或Cl-高温水中的应力腐蚀行为[J].机械工程材料,2021,45(2):15-19.

    MA T,ZHANG X F,HUA X C,et al.Stress corrosion behavior of AISI4340 high strength steel in high temperature water containing oxygen and/or Cl-[J].Materials for Mechanical Engineering,2021,45(2):15-19.
    [5]
    张波,樊巧芳,刘忆.40Cr钢电沉积Ni-W-PTFE复合镀层的耐蚀性研究[J].兵器材料科学与工程,2022,45(2):86-91.

    ZHANG B,FAN Q F,LIU Y.Corrosion resistance of Ni-W-PTFE composite coatings electrodeposited on 40Cr steel[J].Ordnance Material Science and Engineering,2022,45(2):86-91.
    [6]
    岳佳宏,孟璇,姚小卫,等.渗氮后氧化处理40Cr钢的耐蚀性能[J].金属热处理,2021,46(4):217-219.

    YUE J H,MENG X,YAO X W,et al.Corrosion resistance of 40Cr steel after nitriding and oxidation treatment[J].Heat Treatment of Metals,2021,46(4):217-219.
    [7]
    杨明,陈国美,倪自丰,等.氧化石墨烯增强硅烷杂化膜的耐蚀性[J].电镀与涂饰,2020,39(12):771-778.

    YANG M,CHEN G M,NI Z F,et al.Corrosion resistance of graphene-oxide-enhanced silane hybrid film[J].Electroplating & Finishing,2020,39(12):771-778.
    [8]
    赵起越,范益,范恩点,等.低合金结构钢腐蚀的影响因素及其耐蚀性判据[J].工程科学学报,2021,43(2):255-262.

    ZHAO Q Y,FAN Y,FAN E D,et al.Influence factors and corrosion resistance criterion of low-alloy structural steel[J].Chinese Journal of Engineering,2021,43(2):255-262.
    [9]
    LI L F,SONG B,CHENG J,et al.Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel[J].International Journal of Hydrogen Energy,2018,43(36):17353-17363.
    [10]
    MOON J,HA H Y,PARK S J,et al.Effect of Mo and Cr additions on the microstructure,mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels[J].Journal of Alloys and Compounds,2019,775:1136-1146.
    [11]
    GUO J,YANG S W,SHANG C J,et al.Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment[J].Corrosion Science,2009,51(2):242-251.
    [12]
    田骏,李国明,陈珊.Si含量对Fe-Si合金耐海水腐蚀性能的影响[J].材料保护,2016,49(9):78-81.

    TIAN J,LI G M,CHEN S.Effects of Si contents on corrosion resistance of Fe-Si low alloy steels in sea water[J].Materials Protection,2016,49(9):78-81.
    [13]
    FAJARDO S,LLORENTE I,JIMÉNEZ J A,et al.Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution[J].Corrosion Science,2019,154:246-253.
    [14]
    周士猛.新型超高强度钢设计、力学行为及微结构分析[D].北京:北京理工大学,2016. ZHOU S M.Design,mechanical behavior and microstructure of novel ultra-high strength steel[D].Beijing:Beijing Institute of Technology,2016.
    [15]
    杨海洋,黄桂桥,丁国清,等.合金元素对耐候钢耐蚀性能的影响[J].环境技术,2015,33(2):25-27.

    YANG H Y,HUANG G Q,DING G Q,et al.Effect of alloying elements on the corrosion resistance of weathering steel[J].Environmental Technology,2015,33(2):25-27.
    [16]
    刘芮,陈小平,王向东,等.合金元素对耐候钢在海洋大气环境下耐蚀性的影响[J].热加工工艺,2014,43(20):19-22.

    LIU R,CHEN X P,WANG X D,et al.Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment[J].Hot Working Technology,2014,43(20):19-22.
    [17]
    杨波,孙健,郭宏丽.控制冷却工艺对Ti微合金化中碳钢板组织和性能的影响[J].金属热处理,2021,46(4):118-122.

    YANG B,SUN J,GUO H L.Effect of controlled cooling process on microstructure and properties of Ti-microalloyed medium carbon steel plate[J].Heat Treatment of Metals,2021,46(4):118-122.
    [18]
    陈佑剑.常见过渡金属碳化物的制备及其性能研究[D].温州:温州大学,2012.

    CHEN Y J.Preparation and properties of carbides nanomaterials[D].Wenzhou:Wenzhou University,2012.
    [19]
    申强,王忠东,王建平.Ti含量对低合金高强钢组织性能的影响[J].金属世界,2021(1):24-26.

    SHEN Q,WANG Z D,WANG J P.Effect of Ti content on microstructure and properties of low alloy high strength steel[J].Metal World,2021(1):24-26.
    [20]
    杨霞,白英龙,连玉栋,等.合金元素对马氏体时效强化不锈钢力学性能的影响[J].炼钢,2011,27(4):65-69.

    YANG X,BAI Y L,LIAN Y D,et al.Effect of alloying elements on mechanical properties of maraging stainless steel[J].Steelmaking,2011,27(4):65-69.
    [21]
    SONG D,HAO J,YANG F L,et al.Corrosion behavior and mechanism of Cr-Mo alloyed steel:Role of ferrite/bainite duplex microstructure[J].Journal of Alloys and Compounds,2019,809:151787.
    [22]
    徐玉林,徐明波,杨水金.XRD在无机合成中物相分析的应用[J].湖北师范学院学报(自然科学版),2013,33(4):40-46.

    XU Y L,XU M B,YANG S J.Application of X-ray powder diffraction in phase analysis of inorganic synthesis[J].Journal of Hubei Normal University (Natural Science),2013,33(4):40-46.
    [23]
    毕金凤,李祖来,山泉,等.不同碳含量对中碳低合金钢分级等温淬火组织与性能的影响[J].铸造技术,2016,37(9):1845-1848.

    BI J F,LI Z L,SHAN Q,et al.Influence of carbon content on microstructure and mechanical properties of medium carbon steel during progressive isothermal quenching[J].Foundry Technology,2016,37(9):1845-1848.
    [24]
    HALL E O.The deformation and ageing of mild steel:III discussion of results[J].Proceedings of the Physical Society Section B,1951,64(9):747-753.
    [25]
    DOUTHWAITE R M,PETCH N J.A microhardness study relating to the flow stress of polycrystalline mild steel[J].Acta Metallurgica,1970,18(2):211-216.
    [26]
    曹中秋,刘伟华,薛荣,等.晶粒细化对Cu-40Ni合金在酸性含Cl-介质中耐蚀性能的影响[J].稀有金属,2006,30(6):735-739.

    CAO Z Q,LIU W H,XUE R,et al.Effect of grain size on corrosion behavior of Cu-40Ni alloys in acidic media containing Cl-[J].Chinese Journal of Rare Metals,2006,30(6):735-739.
    [27]
    DUARTE R G,CASTELA A S,NEVES R,et al.Corrosion behavior of stainless steel rebars embedded in concrete:An electrochemical impedance spectroscopy study[J].Electrochimica Acta,2014,124:218-224.
    [28]
    RIBEIRO D V,ABRANTES J C C.Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete:A new approach[J].Construction and Building Materials,2016,111:98-104.
    [29]
    TIAN Y W,DONG C F,WANG G,et al.The effect of nickel on corrosion behaviour of high-strength low alloy steel rebar in simulated concrete pore solution[J].Construction and Building Materials,2020,246:118462.
    [30]
    LIU M,CHENG X Q,LI X G,et al.Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution[J].Applied Surface Science,2016,389:1182-1191.
    [31]
    BIESINGER M C,PAYNE B P,GROSVENOR A P,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257(7):2717-2730.
    [32]
    CANO H,DÍAZ I,DE LA FUENTE D,et al.Effect of Cu,Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities[J].Materials and Corrosion,2018,69(1):8-19.
    [33]
    MA Y T,LI Y,WANG F H.The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J].Materials Chemistry and Physics,2008,112(3):844-852.
    [34]
    HAO W K,LIU Z Y,WU W,et al.Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments[J].Materials Science and Engineering:A,2018,710:318-328.

Catalog

    Article views (5) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return