Citation: | CHANG Xubing, WANG Yong, LIN Lin, JI Dongmei. Creep-Fatigue Interaction and Fracture Mechanism of X12CrMoWVNbN10-1-1 Steel[J]. Materials and Mechanical Engineering, 2023, 47(1): 34-41,47. DOI: 10.11973/jxgccl202301005 |
[1] |
SUN Y J, LIU X Q, HU L S, et al.Online life estimation for steam turbine rotor[J].Journal of Loss Prevention in the Process Industries, 2013, 26(1):272-279.
|
[2] |
EVANS M.A generalisation of the Wilshire-Scharning methodology to creep life prediction with application to 1Cr-1Mo-0.25V rotor steel[J].Journal of Materials Science, 2008, 43(18):6070-6080.
|
[3] |
HU J, LIU F, CHENG G X, et al.Life prediction of steam generator tubing due to stress corrosion crack using Monte Carlo Simulation[J].Nuclear Engineering and Design, 2011, 241(10):4289-4298.
|
[4] |
轩福贞, 宫建国.基于损伤模式的压力容器设计原理[M].北京:科学出版社, 2020. XUAN F Z, GONG J G.Fundamental and approaches for damage mode-based design of pressure vessels[M].Beijing:Science Press, 2020.
|
[5] |
BAI Y L, WANG H Y, XIA M F, et al.Statistical mesomechanics of solid, linking coupled multiple space and time scales[J].Applied Mechanics Reviews, 2005, 58(6):372-388.
|
[6] |
FOURNIER B, SAUZAY M, BARCELO F, et al.Creep-fatigue interactions in a 9 pct Cr-1 Pct Mo martensitic steel:Part II.Microstructural evolutions[J].Metallurgical and Materials Transactions A, 2009, 40(2):330-341.
|
[7] |
SAWADA K, KUBO K, ABE F.Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel[J].Materials Science and Engineering:A, 2001, 319/320/321:784-787.
|
[8] |
AOTO K, KOMINE R, UENO F, et al.Creep-fatigue evaluation of normalized and tempered modified 9Cr-1Mo[J].Nuclear Engineering and Design, 1994, 153(1):97-110.
|
[9] |
殷凤仕, 杨钢, 李茹, 等.X12CrMoWVNbN10-1-1耐热钢的组织和高温力学性能[J].材料热处理学报, 2012, 33(12):72-75.
YIN F S, YANG G, LI R, et al.Microstructure and high temperature mechnical properties of X12CrMoWVNbN10-1-1 heat resistant steel[J].Transactions of Materials and Heat Treatment, 2012, 33(12):72-75.
|
[10] |
Zhao P, Xuan F Z. Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling[J]. Acta Metallurgica Sinica. 2011, 24(2):148-154.
|
[11] |
ZHAO P, XUAN F Z.Ratchetting behavior of advanced 9-12% chromium ferrite steel under creep-fatigue loadings:Fracture modes and dislocation patterns[J].Materials Science and Engineering:A, 2012, 539:301-307.
|
[12] |
ZHAO P, XUAN F Z.Ratchetting behavior of advanced 9-12% chromium ferrite steel under creep-fatigue loadings[J].Mechanics of Materials, 2011, 43(6):299-312.
|
[13] |
KARTHIKEYAN T, DASH M K, RAVIKIRANA, et al.Effect of prior-austenite grain refinement on microstructure, mechanical properties and thermal embrittlement of 9Cr-1Mo-0.1C steel[J].Journal of Nuclear Materials, 2017, 494:260-277.
|
[14] |
WU D L, XUAN F Z, GUO S J, et al.Uniaxial mean stress relaxation of 9-12% Cr steel at high temperature:Experiments and viscoplastic constitutive modeling[J].International Journal of Plasticity, 2016, 77:156-173.
|
[15] |
GIROUX P F, DALLE F, SAUZAY M, et al.Influence of strain rate on P92 microstructural stability during fatigue tests at high temperature[J].Procedia Engineering, 2010, 2(1):2141-2150.
|
[16] |
GOPINATH K, GUPTA R K, SAHU J K, et al.Designing P92 grade martensitic steel header pipes against creep-fatigue interaction loading condition:Damage micromechanisms[J].Materials & Design, 2015, 86:411-420.
|
[17] |
TANAKA M.The fractal dimension of grain-boundary fracture in high-temperature creep of heat-resistant alloys[J].Journal of Materials Science, 1993, 28(21):5753-5758.
|
[18] |
殷凤仕, 杨钢, 李茹, 等.X12CrMoWVNbN10-1-1耐热钢的组织和高温力学性能[J].材料热处理学报, 2012, 33(12):72-75.
YIN F S, YANG G, LI R, et al.Microstructure and high temperature mechnical properties of X12CrMoWVNbN10-1-1 heat resistant steel[J].Transactions of Materials and Heat Treatment, 2012, 33(12):72-75.
|
[19] |
JI D M, ZHANG L C, REN J X, et al.Creep-fatigue interaction and cyclic strain analysis in P92 steel based on test[J].Journal of Materials Engineering and Performance, 2015, 24(4):1441-1451.
|
[20] |
JI D M, SHEN M H H, WANG D X, et al.Creep-fatigue life prediction and reliability analysis of P91 steel based on applied mechanical work density[J].Journal of Materials Engineering and Performance, 2015, 24(1):194-201.
|
[21] |
CHEN J J, JI D M, CAI X D, et al.Effect of holding duration at maximum and minimum stress on creep fatigue interaction of P92 steel[J].Materials at High Temperatures, 2020, 37(1):51-60.
|
[22] |
ZHANG G D, ZHAO Y F, XUE F, et al.Creep-fatigue interaction damage model and its application in modified 9Cr-1Mo steel[J].Nuclear Engineering and Design, 2011, 241(12):4856-4861.
|