• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Jin, HUANG Yuntao, YUE Xinyan, ZHANG Cuiping, RU Hongqiang. Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites[J]. Materials and Mechanical Engineering, 2023, 47(1): 70-75. DOI: 10.11973/jxgccl202301010
Citation: ZHANG Jin, HUANG Yuntao, YUE Xinyan, ZHANG Cuiping, RU Hongqiang. Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites[J]. Materials and Mechanical Engineering, 2023, 47(1): 70-75. DOI: 10.11973/jxgccl202301010

Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites

More Information
  • Received Date: August 14, 2021
  • Revised Date: September 01, 2022
  • Taking Al2O3 and TiC powders as raw materials, TiC-Al2O3 conductive ceramic composites were prepared by pressureless sintering technique. The effects of TiC content on the microstructure and properties of ceramic composites were investigated. The results show that TiC-Al2O3 conductive ceramic composites mainly consisted of Al2O3 phase and TiC phase. With increasing content of TiC, the relative density decreased, and the open porosity increased; when the TiC volume fraction was 30%, the ceramic composites had the maximum relative density of 95.5% and the minimum open porosity of 3.0%. The conductive phase TiC in ceramic composites was connected as a network structure; with increasing TiC content, the network structure formed by TiC became more complete,the hardness of ceramic composites increased first and then decreased, the resistivity and fracture toughness decreased, and the bending strength increased. When the TiC volume fraction was 45%, the bending strength was the highest and the conductivity was the lowest, which were 361 MPa, 6.95×10-6 Ω·m, respectively.
  • [1]
    GU J W, MENG X D, TANG Y S, et al.Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities[J].Composites Part A:Applied Science and Manufacturing, 2017, 92:27-32.
    [2]
    LESSING J, MORIN S A, KEPLINGER C, et al.Stretchable conductive composites based on metal wools for use as electrical vias in soft devices[J].Advanced Functional Materials, 2015, 25(9):1418-1425.
    [3]
    ZHAO L, BROUWER J.Electrical properties of Sr0.86Y0.08TiO3 under redox and full cell fabrication conditions[J].Journal of Fuel Cell Science and Technology, 2012, 9(5):1-5.
    [4]
    FANG B, HUANG C Z, LIU H L, et al.Effect of fabrication parameters on mechanical properties of Al2O3 ceramic tool materials[J].Key Engineering Materials, 2008, 375/376:97-101.
    [5]
    LI D, YANG H, LIAN J, et al.Progress in research on nanometer Al2O3 fabricated by sol-gel method[J].Journal of Rare Earths, 2005, 23:600-605.
    [6]
    张志林, 郭伟明, 游洋, 等.烧结温度和复合助剂对Al2O3-TiCN复合陶瓷显微组织和性能的影响[J].机械工程材料, 2015, 39(10):47-51.

    ZHANG Z L, GUO W M, YOU Y, et al.Effects of sintering temperature and composite additive on microstructure and properties of Al2O3-TiCN ceramics[J].Materials for Mechanical Engineering, 2015, 39(10):47-51.
    [7]
    CAI K F, MCLACHLAN D S, AXEN N, et al.Preparation, microstructures and properties of Al2O3-TiC composites[J].Ceramics International, 2002, 28(2):217-222.
    [8]
    韩娟, 张永恒.ZnO导电陶瓷的制备及电性能研究[J].青岛科技大学学报(自然科学版), 2004, 25(1):39-42.

    HAN J, ZHANG Y H.Study of preparation and electrical properties for ZnO ceramics[J].Journal of Qingdao University of Science and Technology, 2004, 25(1):39-42.
    [9]
    孙晓. 氧化铝陶瓷基逾渗复合材料的介电性能研究[D]. 济南:齐鲁工业大学, 2020.

    SUN X. Study on the dielectric properties in percolative alumina ceramic composite[D]. Jinan:Qilu University of Technology, 2020.
    [10]
    DONG Q, TANG Q, LI W C.Al2O3-TiC-ZrO2 nanocomposites fabricated by combustion synthesis followed by hot pressing[J].Materials Science and Engineering:A, 2008, 475(1/2):68-75.
    [11]
    刘炳强.原位合成碳化钛晶须增韧氧化铝陶瓷刀具材料前驱体组分研究[J].潍坊学院学报, 2010, 10(4):5-8.

    LIU B Q.Study on precursor components of alumina ceramic tool materials toughened by in-situ synthesized titanium carbide whiskers[J].Journal of Weifang University, 2010, 10(4):5-8.
    [12]
    GEVORKYAN E, RUCKI M, PANCHENKO S, et al.Effect of SiC addition to Al2O3 ceramics used in cutting tools[J].Materials (Basel, Switzerland), 2020, 13(22):5195.
    [13]
    KUMAR A S, DURAI A R, SORNAKUMAR T.Machinability of hardened steel using alumina based ceramic cutting tools[J].International Journal of Refractory Metals and Hard Materials, 2003, 21(3/4):109-117.
    [14]
    GEVORKYAN E, LAVRYNENKO S, RUCKI M, et al.Ceramic cutting tools out of nanostructured refractory compounds[J].International Journal of Refractory Metals and Hard Materials, 2017, 68:142-144.
    [15]
    WANG D, XUE C, CAO Y, et al.Fabrication and cutting performance of an Al2O3/TiC/TiN ceramic cutting tool in turning of an ultra-high-strength steel[J].The International Journal of Advanced Manufacturing Technology, 2017, 91(5/6/7/8):1967-1976.
    [16]
    TANAKA K.Elastic/plastic indentation hardness and indentation fracture toughness:The inclusion core model[J].Journal of Materials Science, 1987, 22(4):1501-1508.
    [17]
    冯月斌.氧化铝真空碳热还原和碳热还原-氯化-歧化反应研究[D].昆明:昆明理工大学, 2011. FENG Y B.Study on vacuum carbothermal reduction and carbothermal reduction chlorination disproportionation of alumina[D].Kunming:Kunming University of Science and Technology, 2011.
    [18]
    SHIN S G. A study on the percolation threshold of polyethylene matrix composites filled carbon powder[J].Electronic Materials Letters, 2010, 6(2):65-70.
    [19]
    蔡克峰, 南策文, 袁润章.无压烧结制备Al2O3-TiC复合陶瓷[J].硬质合金, 1994, 11(4):215-218.

    CAI K F, NAN C W, YUAN R Z.Pressureless sintering of Al2O3-TiC composites[J].Cemented Carbide, 1994, 11(4):215-218.
    [20]
    茹红强, 张宁, 王磊, 孙旭东.无压烧结Al2O3/B4C复合材料的组织与性能[J].材料与冶金学报, 2002, 1(1):53-56.

    RU H Q, ZHANG N, WANG L, et al.Microstructure and properties of pressureless sintered Al2O3/B4C composites[J].Journal of Materials and Metallurgy, 2002, 1(1):53-56.
    [21]
    宋京红, 杨海涛.氧化铝基复合陶瓷物理和力学性能的研究[J].稀有金属快报, 2008, 27(4):27-30.

    SONG J H, YANG H T.Research on physical and mechanical properties of alumina-matrix nanocomposite ceramic[J].Rare Metals Letters, 2008, 27(4):27-30.
    [22]
    杨治华, 贾德昌, 褚雷阳, 等.纳米TiN-Al2O3基复相陶瓷的电学及力学性能[J].硅酸盐学报, 2010, 38(8):1480-1483.

    YANG Z H, JIA D C, CHU L Y, et al.Electrical and mechanical properties of nano-sized TiN-Al2O3 ceramics[J].Journal of the Chinese Ceramic Society, 2010, 38(8):1480-1483.
    [23]
    金志浩, 高积强, 乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社, 2000.

    JIN Z H, GAO J Q, QIAO G J.Engineering ceramic materials[M].Xi'an:Xi'an Jiaotong University Press, 2000.
    [24]
    傅正义, 王皓, 王为民, 等.采用SHS/QP技术制备TiC-xNi金属陶瓷:I.燃烧合成过程研究[J].复合材料学报, 1997(2):56-60.

    FU Z Y, WANG H, WANG W M, et al.TiC-xNi cermets made by SHS/QP method:I.Study on the combustion process[J].Acta Materiae Compositae Sinica, 1997(2):56-60.
    [25]
    张彬.TiC-Al2O3/Fe3C复相陶瓷材料的制备及性能研究[D].西安:长安大学, 2013. ZHANG B.Research on preparation and properties of TiC-Al2O3/Fe3C composite ceramics material[D].Xi'an:Changan University, 2013.
    [26]
    李见.材料科学基础[M].北京:冶金工业出版社, 2000.

    LI J.Fundamentals of materials science[M].Beijing:Metallurgical Industry Press, 2000.
    [27]
    GRIGORIEV S, VOLOSOVA M, PERETYAGIN P, et al.The effect of TiC additive on mechanical and electrical properties of Al2O3 ceramic[J].Applied Sciences, 2018, 8(12):2385.
    [28]
    张荣.聚乙烯基复合材料的导电机理及电热性能研究[D].大连:大连理工大学, 2014. ZHANG R.Study on electrical conductive mechanism and electrical heating properties of polyethylene-based composites[D].Dalian:Dalian University of Technology, 2014.

Catalog

    Article views (5) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return