• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
REN Yubo, PENG Jinfang, CAO Chao, TANG Pan, SHEN Changhui, FANG Jingting, ZHU Minhao. Current-Carrying Friction and Wear Performance of Carbon CeramicComposites in Rain Water Environment[J]. Materials and Mechanical Engineering, 2023, 47(1): 93-99,110. DOI: 10.11973/jxgccl202301014
Citation: REN Yubo, PENG Jinfang, CAO Chao, TANG Pan, SHEN Changhui, FANG Jingting, ZHU Minhao. Current-Carrying Friction and Wear Performance of Carbon CeramicComposites in Rain Water Environment[J]. Materials and Mechanical Engineering, 2023, 47(1): 93-99,110. DOI: 10.11973/jxgccl202301014

Current-Carrying Friction and Wear Performance of Carbon CeramicComposites in Rain Water Environment

More Information
  • Received Date: September 07, 2021
  • Revised Date: November 07, 2022
  • The current-carrying friction and wear tests of carbon ceramic composite for brake disc were carried out by the pin-disk friction and wear testing machine, and the friction and wear properties of carbon ceramic composite under different friction conditions were studied. The results show that in rainwater environment without current-carrying, with rainwater flow rate increasing from 0 to 1 mL·min-1, the surface roughness of carbon ceramic composite decreased significantly, while the friction coefficient and wear rate decreased slightly; the wear mechanism included spalling and slight oxidation wear. Under the current-carrying condition without rainwater, with current intensity increasing from 0 to 100 A, the surface roughness and friction coefficient decreased significantly, and the wear rate increased obviously; the wear mechanism included spalling, abrasive wear, adhesive wear and arc ablation. Compared with those affected by the single factor, the surface roughness and friction coefficient decreased significantly under the combined action of current carrying and rainwater, but the law of the wear rate increasing with the rainwater flow or the current intensity was not obvious; the wear mechanism was spalling, oxidation wear, abrasive wear and adhesive wear.
  • [1]
    李希宁, 佟来生.中低速磁浮列车技术研究进展[J].电力机车与城轨车辆, 2011, 34(2):1-4.

    LI X N, TONG L S.Technology research of medium and low speed maglev train[J].Electric Locomotives & Mass Transit Vehicles, 2011, 34(2):1-4.
    [2]
    蒋廉华, 唐亮, 曾春军, 等.中低速磁浮列车制动系统设计与研究[J].电力机车与城轨车辆, 2017, 40(3):18-22.

    JIANG L H, TANG L, ZENG C J, et al.Design and research on braking system of mid-low speed maglev train[J].Electric Locomotives & Mass Transit Vehicles, 2017, 40(3):18-22.
    [3]
    谢子方, 高向东.列车制动技术的研究与展望[J].内燃机车, 2007(2):26-29.

    XIE Z F, GAO X D.Study and view of train braking technique[J].Diesel Locomotives, 2007(2):26-29.
    [4]
    钱坤才, 吴射章, 乔青锋, 等.高寒雨雪气候下高速动车组盘片摩擦副摩擦性能[J].西南交通大学学报, 2017, 52(6):1188-1192.

    QIAN K C, WU S Z, QIAO Q F, et al.Friction performance of brake disks and blocks for high-speed EMU trains in cold, rainy, and snowy weather[J].Journal of Southwest Jiaotong University, 2017, 52(6):1188-1192.
    [5]
    王章忠.列车制动闸瓦磨损与制动材料分析[J].机械制造, 2003, 41(10):41-43.

    WANG Z Z.Analysis of wear of train brake-shoes and brake materials[J].Machinery, 2003, 41(10):41-43.
    [6]
    KRNEL K, STADLER Z, KOSMA AČG T.Carbon/carbon-silicon-carbide dual-matrix composites for brake discs[J].Materials and Manufacturing Processes, 2008, 23(6):587-590.
    [7]
    ZHANG Y H, XIAO Z C, YANG J F, et al.Preparation of C/C-SiC brake materials with low cost and high friction performance[J].Materials Science Forum, 2009, 620/621/622:421-424.
    [8]
    GOO B C.Development and characterization of C/C-SiC brake disc[J].Materials and Manufacturing Processes, 2016, 31(8):979-988.
    [9]
    FAN S W, DENG J L, XU X Y, et al.Effect of braking speed on frictional properties of short fiber C/C-SiC brake materials and grey cast iron[J].Tribology Transactions, 2013, 56(4):630-636.
    [10]
    GUO W J, BAI S X, YE Y C, et al.A new strategy for high-value reutilization of recycled carbon fiber:Preparation and friction performance of recycled carbon fiber felt-based C/C-SiC brake pads[J].Ceramics International, 2019, 45(13):16545-16553.
    [11]
    LI Z, XIAO P, XIONG X.Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction[J].International Journal of Minerals, Metallurgy, and Materials, 2010, 17(4):500-505.
    [12]
    李江鸿, 熊翔, 张红波, 等.不同制动速度下C/C复合材料摩擦面研究[J].复合材料学报, 2007, 24(4):112-117.

    LI J H, XIONG X, ZHANG H B, et al.Study on the worn surfaces of C/C composites at various braking velocities[J].Acta Materiae Compositae Sinica, 2007, 24(4):112-117.
    [13]
    周海军, 董绍明, 何平, 等.碳/碳碳化硅复合材料的摩擦磨损行为与机理[J].无机材料学报, 2013, 28(10):1057-1061.

    ZHOU H J, DONG S M, HE P, et al.Tribological behaviors and anti-wear mechanisms of carbon/carbon-silicon carbide composites[J].Journal of Inorganic Materials, 2013, 28(10):1057-1061.
    [14]
    肖鹏, 熊翔, 任芸芸.制动速度对C/C-SiC复合材料摩擦磨损性能的影响[J].摩擦学学报, 2006, 26(1):12-17.

    XIAO P, XIONG X, REN Y Y.Effect of braking speed on friction properties of C/C-SiC composites[J].Tribology, 2006, 26(1):12-17.
    [15]
    FAN S W, SUN H D, MA X, et al.Microstructure and properties of a new structure-function integrated C/C-SiC brake material[J].Journal of Alloys and Compounds, 2018, 769:239-249.
    [16]
    CHEN G Y, LI Z, XIAO P, et al.Tribological properties and thermal-stress analysis of C/C-SiC composites during braking[J].Transactions of Nonferrous Metals Society of China, 2019, 29(1):123-131.
    [17]
    李专, 肖鹏, 岳静, 等.C/C-SiC材料不同制动速率下的湿式摩擦磨损性能[J].材料工程, 2013, 41(3):71-76.

    LI Z, XIAO P, YUE J, et al.Wet friction and wear properties of C/C-SiC composites during different braking speeds[J].Journal of Materials Engineering, 2013, 41(3):71-76.
    [18]
    FAN S W, MA X, NING Y F, et al.Tribological performance of B4C modified C/C-SiC brake materials under dry air and wet conditions[J].Ceramics International, 2019, 45(10):12870-12879.
    [19]
    徐晓峰, 宋克兴, 杜三明.载流条件下铜基粉末冶金材料的摩擦磨损行为[J].材料保护, 2008, 41(7):66-68.

    XU X F, SONG K X, DU S M.Friction and wear behavior of copper-base powder metallurgical material sliding against Cu-Cr alloys under in the presence of electric current[J].Materials Protection, 2008, 41(7):66-68.
    [20]
    张晓娟, 孙乐民, 李鹏, 等.铜基粉末冶金材料载流摩擦学特性研究[J].热加工工艺, 2007, 36(14):1-3.

    ZHANG X J, SUN L M, LI P, et al.Research on tribological property of Cu-base Powder metallurgy material under electrical current[J].Hot Working Technology, 2007, 36(14):1-3.
    [21]
    韩晓明, 高飞, 宋宝韫, 等.水分对铜基摩擦材料摩擦磨损性能的影响[J].大连交通大学学报, 2010, 31(2):38-40.

    HAN X M, GAO F, SONG B Y, et al.Effect of water on tribological characteristics of copper based friction materials[J].Journal of Dalian Jiaotong University, 2010, 31(2):38-40.
    [22]
    李韶林, 国秀花, 宋克兴, 等.载流摩擦用铜基复合材料的研究现状及展望[J].材料热处理学报, 2021, 42(4):1-16.

    LI S L, GUO X H, SONG K X, et al.Research progress and prospect of copper matrix materials for current-carrying friction[J].Transactions of Materials and Heat Treatment, 2021, 42(4):1-16.
    [23]
    符蓉, 高飞, 牟超, 等.铜基复合材料干湿条件下的摩擦学行为[J].复合材料学报, 2010, 27(1):79-85.

    FU R, GAO F, MU C, et al.Tribological performance of copper matrix composites under dry and wet conditions[J].Acta Materiae Compositae Sinica, 2010, 27(1):79-85.

Catalog

    Article views (5) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return