Citation: | WANG Qiuyu, XIA Mingsheng, LIU Shuying, ZHANG Saijuan, XU Kuan, LI Liming. Effect of Microstructure Characteristics on Formability and Tensile Behavior of 980 MPa Grade Advanced Ultra-high Strength Steels[J]. Materials and Mechanical Engineering, 2023, 47(1): 100-105,118. DOI: 10.11973/jxgccl202301015 |
[1] |
蒋浩民, 陈新平, 石磊, 等.先进高强度钢板的冲压成形特性及其应用[J].塑性工程学报, 2009, 16(4):183-186.
JIANG H M, CHEN X P, SHI L, et al.Forming characteristics and application of advanced high strength steel[J].Journal of Plasticity Engineering, 2009, 16(4):183-186.
|
[2] |
HALL J N, CORYELL J, WENDT B, et al.Case studies of edge fracture of dual phase steel stampings[J].SAE International Journal of Materials and Manufacturing, 2015, 8(3):783-788.
|
[3] |
YOON J I, JUNG J, JOO S H, et al.Correlation between fracture toughness and stretch-flangeability of advanced high strength steels[J].Materials Letters, 2016, 180:322-326.
|
[4] |
MORI K I, ABE Y, SUZUI Y.Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge[J].Journal of Materials Processing Technology, 2010, 210(4):653-659.
|
[5] |
DYKEMAN J, MALCOLM S, YAN B D, et al.Characterization of edge fracture in various types of advanced high strength steel[C]//SAE Technical Paper Series.Warrendale, PA, United States:SAE International, 2011:68-73.
|
[6] |
DEMERI M Y.Forming of advanced high-strength steels[M]//Metalworking:Sheet Forming.[S.l]:ASM International, 2006:530-538.
|
[7] |
陈劼实, 周贤宾. 板料成形极限的理论预测与数值模拟研究[J].塑性工程学报, 2004, 11(1):13-17.
CHEN J S, ZHOU X B. Theoretical prediction and numerical simulation of sheet metal forming limit[J]. Journal of Plsticity Engineering. 2004, 11(1):13-17.
|
[8] |
SARTKULVANICH P, KROENAUER B, GOLLE R, et al. Finite element analysis of the effect of blanked edge quality upon stretch flanging of AHSS[J]. CIRP Annals:Manufacturing Technology, 2010, 59(1):279-282.
|
[9] |
YE C J, CHEN J S, XIA C, et al.Study of curvature and pre-damage effects on the edge stretchability of advanced high strength steel based on a new simulation model[J].International Journal of Material Forming, 2016, 9(3):269-276.
|
[10] |
BRANDON H. Advanced high strength steel:Deciphering local and global formability[C]//IABC Dearborn. Michigan:[s.n.], 2016.
|
[11] |
邹丹青.QP钢应变诱发相变动力学模型及回弹特性研究[D].上海:上海交通大学, 2018.
ZOU D Q.Kinetics model of deformation induced martensitic transformation and springback behavior for QP steel sheet forming[D].Shanghai:Shanghai Jiao Tong University, 2018.
|
[12] |
SRIVASTAVA A, GHASSEMI-ARMAKI H, SUNG H, et al. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel:Experiments and modeling[J]. Journal of the Mechanics and Physics of Solids, 2015, 78:46-69.
|
[13] |
WANG J J, ZWAAG S.Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J].Metallurgical and Materials Transactions A, 2001, 32(6):1527-1539.
|
[14] |
DE MOOR E, LACROIX S, CLARKE A J, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A, 2008, 39(11):2586.
|
[15] |
LOU Y S, HUH H.Prediction of ductile fracture for advanced high strength steel with a new criterion:Experiments and simulation[J].Journal of Materials Processing Technology, 2013, 213(8):1284-1302.
|
[16] |
GURSON A L.Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J].Journal of Engineering Materials and Technology, 1977, 99(1):2-15.
|
[17] |
BEESE A M, MOHR D. Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation[J]. Acta Materialia, 2011, 59(7):2589-2600.
|
[18] |
KADKHODAPOUR J, BUTZ A, RAD S Z.Mechanisms of void formation during tensile testing in a commercial, dual-phase steel[J].Acta Materialia, 2011, 59(7):2575-2588.
|
[19] |
TJAHJANTO D D, SUIKER A S J, TURTELTAUB S, et al.Micromechanical predictions of TRIP steel behavior as a function of microstructural parameters[J].Computational Materials Science, 2007, 41(1):107-116.
|
[20] |
ZHANG S, FINDLEY K O.Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels[J].Acta Materialia, 2013, 61(6):1895-1903.
|
[21] |
魏星, 钟勇, 彭周, 等.QP980和QP1180的塑性变形及断裂行为[J].塑性工程学报, 2021, 28(12):103-114.
WEI X, ZHONG Y, PENG Z, et al. Plastic deformation and fracture behavior of QP980 and QP1180[J]. Journal of Plasticity Engineering, 2021, 28(12):103-114.
|