• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Xuexian, DUAN Baohua, YANG Yuchen, MAO Lu, CHEN Guangyao, HOU Xinmei, LI Chonghe. Directional Solidification Microstructure of Ti-46Al-8Nb Alloy and Effectof Crystal Selector Angle on Alloy Lamellar Orientation[J]. Materials and Mechanical Engineering, 2023, 47(2): 7-13,72. DOI: 10.11973/jxgccl202302002
Citation: ZHANG Xuexian, DUAN Baohua, YANG Yuchen, MAO Lu, CHEN Guangyao, HOU Xinmei, LI Chonghe. Directional Solidification Microstructure of Ti-46Al-8Nb Alloy and Effectof Crystal Selector Angle on Alloy Lamellar Orientation[J]. Materials and Mechanical Engineering, 2023, 47(2): 7-13,72. DOI: 10.11973/jxgccl202302002

Directional Solidification Microstructure of Ti-46Al-8Nb Alloy and Effectof Crystal Selector Angle on Alloy Lamellar Orientation

More Information
  • Received Date: December 06, 2021
  • Revised Date: October 31, 2022
  • Ti-46Al-8Nb (atomic fraction/%) alloy was directionally solidified by using BaZrO3/Al2O3 composite mold shell with Bridgman furnace. The interface erosion layer morphology, microstructure and phase composition of the alloy, and the effect of the crystal selector angle on the crystal selection efficiency and the alloy lamellar orientation were studied. The results show that after directional solidification, a 10 μm thick erosion layer existed at the bottom of the alloy. With increasing height, the oxygen content in the alloy and the thickness of the erosion layer increased. The alloy had a full lamellar structure composed of γ (TiAl) and α2 (Ti3Al) phases, and no inclusions existed. Within 30°-60°, the smaller the crystal selector angle was, the higher the crystal selection efficiency was. The crystal selector angle had little effect on the angle between the alloy lamellar orientation and growth direction.
  • [1]
    CLEMENS H, MAYER S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials, 2013, 15(4):191-215.
    [2]
    KIM Y W.Intermetallic alloys based on gamma titanium aluminide[J].JOM, 1989, 41(7):24-30.
    [3]
    BEWLAY B P, NAG S, SUZUKI A, et al.TiAl alloys in commercial aircraft engines[J].Materials at High Temperatures, 2016, 33(4/5):549-559.
    [4]
    MAYER S, ERDELY P, FISCHER F D, et al.Intermetallic β-solidifying γ-TiAl based alloys:From fundamental research to application[J].Advanced Engineering Materials, 2017, 19(4):1600735.
    [5]
    LAPIN J, ŠTAMBORSKA M, KAMYSHNYKOVA K, et al.Room temperature mechanical behaviour of cast in situ TiAl matrix composite reinforced with carbide particles[J].Intermetallics, 2019, 105:113-123.
    [6]
    KOOHPAYEH S M, FORT D, ABELL J S. The optical floating zone technique:A review of experimental procedures with special reference to oxides[J]. Progress in Crystal Growth and Characterization of Materials, 2008, 54(3/4):121-137.
    [7]
    陈瑞润, 丁宏升, 毕维生, 等.电磁冷坩埚技术及其应用[J].稀有金属材料与工程, 2005(4):510-514.

    CHEN R R, DING H S, BI W S, et al.Electromagnetic cold crucible technology and its application[J].Rare Metal Materials and Engineering, 2005(4):510-514.
    [8]
    ELLIOTT A J, POLLOCK T M.Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes[J].Metallurgical and Materials Transactions A, 2007, 38(4):871-882.
    [9]
    SADRNEZHAD S K, RAZ S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy[J]. Metallurgical and Materials Transactions B, 2005, 36(3):395-403.
    [10]
    GOMES F, BARBOSA J, RIBEIRO C S.Induction melting of γ-TiAl in CaO crucibles[J].Intermetallics, 2008, 16(11/12):1292-1297.
    [11]
    LAPIN J, GABALCOVÁ Z, PELACHOVÁ T.Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy[J].Intermetallics, 2011, 19(3):396-403.
    [12]
    LI C H, GAO Y H, LU X G, et al. Interaction between the ceramic CaZrO3 and the melt of titanium alloys[J].Advances in Science and Technology, 2010, 70:136-140.
    [13]
    CHEN G Y, KANG J Y, GAO P Y, et al.Dissolution of BaZrO3 refractory in titanium melt[J].International Journal of Applied Ceramic Technology, 2018, 15(6):1459-1466.
    [14]
    罗文忠, 沈军, 闵志先, 等.TiAl合金定向凝固过程中与坩埚材料的界面反应研究[J].稀有金属材料与工程, 2009, 38(8):1441-1445.

    LUO W Z, SHEN J, MIN Z X, et al.Investigation of interfacial reactions between TiAl alloy and crucible materials during directional solidification process[J].Rare Metal Materials and Engineering, 2009, 38(8):1441-1445.
    [15]
    KARTAVYKH A V, TCHERDYNTSEV V V, ZOLLINGER J.TiAl-Nb melt interaction with AlN refractory crucibles[J].Materials Chemistry and Physics, 2009, 116(1):300-304.
    [16]
    FARAN E, GOTMAN I, GUTMANAS E Y.Experimental study of the reaction zone at boron nitride ceramic-Ti metal interface[J].Materials Science and Engineering:A, 2000, 288(1):66-74.
    [17]
    CHEN G Y, GAO P Y, KANG J Y, et al.Improved stability of BaZrO3 refractory with Y2O3 additive and its interaction with titanium melts[J].Journal of Alloys and Compounds, 2017, 726:403-409.
    [18]
    CHEN G Y, LAN B B, XIONG F H, et al.Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible[J].Vacuum, 2019, 159:293-298.
    [19]
    LI K, CHEN G Y, ZHANG H, et al.Microstructure evolution of directionally solidified Ti-46Al-8Nb alloy in the BaZrO3-based mould[J]. Materials Research Express, 2018, 5(11):116529.
    [20]
    CHEN G, PENG Y B, ZHENG G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J].Nature Materials, 2016, 15(8):876-881.
    [21]
    JUNG I S, JANG H S, OH M H, et al.Microstructure control of TiAl alloys containing β stabilizers by directional solidification[J].Materials Science and Engineering:A, 2002, 329/330/331:13-18.
    [22]
    YAMAGUCHI M, JOHNSON D R, LEE H N, et al.Directional solidification of TiAl-base alloys[J].Intermetallics, 2000, 8(5/6):511-517.
    [23]
    陈光, 陈奉锐, 祁志祥, 等.聚片孪生TiAl单晶及其应用展望[J].振动.测试与诊断, 2019, 39(5):915-926.

    CHEN G, CHEN F R, QI Z X, et al. PST TiAl single crystal and its application prospect[J].Journal of Vibration, Measurement & Diagnosis, 2019, 39(5):915-926.
    [24]
    DING X F, LIN J P, ZHANG L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J].Acta Materialia, 2012, 60(2):498-506.
    [25]
    LIU T, LUO L S, SU Y Q, et al.Lamellar orientation control of Ti-47Al-0.5W-0.5Si by directional solidification using β seeding technique[J].Intermetallics, 2016, 73:1-4.
    [26]
    LI K, XIONG F H, CHEN G Y, et al.Directional solidification of Ti-46Al-8Nb alloy in BaZrO3 coated Al2O3 composite mould[J].Intermetallics, 2018, 102:106-113.
    [27]
    GOTO K, HANAGIRI S, KOHNO K, et al. Progress and perspective of refractory technology[J]. Nippon Steel Technical Report, 2013, 104:21-25.
    [28]
    IMAYEV R M, IMAYEV V M, OEHRING M, et al.Alloy design concepts for refined gamma titanium aluminide based alloys[J]. Intermetallics, 2007, 15(4):451-460.
    [29]
    DING X F, LIN J P, ZHANG L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J].Scripta Materialia, 2011, 65(1):61-64.
    [30]
    BURGERS W G, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1:561-586.
    [31]
    BLACKBURN M J.Some aspects of phase transformations in titanium alloys[M]//Science, Technology and Application of Titanium. London:Oxford Pergamon Press Ltd., 1970:633-643.

Catalog

    Article views (5) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return