Citation: | ZHANG Xuexian, DUAN Baohua, YANG Yuchen, MAO Lu, CHEN Guangyao, HOU Xinmei, LI Chonghe. Directional Solidification Microstructure of Ti-46Al-8Nb Alloy and Effectof Crystal Selector Angle on Alloy Lamellar Orientation[J]. Materials and Mechanical Engineering, 2023, 47(2): 7-13,72. DOI: 10.11973/jxgccl202302002 |
[1] |
CLEMENS H, MAYER S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials, 2013, 15(4):191-215.
|
[2] |
KIM Y W.Intermetallic alloys based on gamma titanium aluminide[J].JOM, 1989, 41(7):24-30.
|
[3] |
BEWLAY B P, NAG S, SUZUKI A, et al.TiAl alloys in commercial aircraft engines[J].Materials at High Temperatures, 2016, 33(4/5):549-559.
|
[4] |
MAYER S, ERDELY P, FISCHER F D, et al.Intermetallic β-solidifying γ-TiAl based alloys:From fundamental research to application[J].Advanced Engineering Materials, 2017, 19(4):1600735.
|
[5] |
LAPIN J, ŠTAMBORSKA M, KAMYSHNYKOVA K, et al.Room temperature mechanical behaviour of cast in situ TiAl matrix composite reinforced with carbide particles[J].Intermetallics, 2019, 105:113-123.
|
[6] |
KOOHPAYEH S M, FORT D, ABELL J S. The optical floating zone technique:A review of experimental procedures with special reference to oxides[J]. Progress in Crystal Growth and Characterization of Materials, 2008, 54(3/4):121-137.
|
[7] |
陈瑞润, 丁宏升, 毕维生, 等.电磁冷坩埚技术及其应用[J].稀有金属材料与工程, 2005(4):510-514.
CHEN R R, DING H S, BI W S, et al.Electromagnetic cold crucible technology and its application[J].Rare Metal Materials and Engineering, 2005(4):510-514.
|
[8] |
ELLIOTT A J, POLLOCK T M.Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes[J].Metallurgical and Materials Transactions A, 2007, 38(4):871-882.
|
[9] |
SADRNEZHAD S K, RAZ S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy[J]. Metallurgical and Materials Transactions B, 2005, 36(3):395-403.
|
[10] |
GOMES F, BARBOSA J, RIBEIRO C S.Induction melting of γ-TiAl in CaO crucibles[J].Intermetallics, 2008, 16(11/12):1292-1297.
|
[11] |
LAPIN J, GABALCOVÁ Z, PELACHOVÁ T.Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy[J].Intermetallics, 2011, 19(3):396-403.
|
[12] |
LI C H, GAO Y H, LU X G, et al. Interaction between the ceramic CaZrO3 and the melt of titanium alloys[J].Advances in Science and Technology, 2010, 70:136-140.
|
[13] |
CHEN G Y, KANG J Y, GAO P Y, et al.Dissolution of BaZrO3 refractory in titanium melt[J].International Journal of Applied Ceramic Technology, 2018, 15(6):1459-1466.
|
[14] |
罗文忠, 沈军, 闵志先, 等.TiAl合金定向凝固过程中与坩埚材料的界面反应研究[J].稀有金属材料与工程, 2009, 38(8):1441-1445.
LUO W Z, SHEN J, MIN Z X, et al.Investigation of interfacial reactions between TiAl alloy and crucible materials during directional solidification process[J].Rare Metal Materials and Engineering, 2009, 38(8):1441-1445.
|
[15] |
KARTAVYKH A V, TCHERDYNTSEV V V, ZOLLINGER J.TiAl-Nb melt interaction with AlN refractory crucibles[J].Materials Chemistry and Physics, 2009, 116(1):300-304.
|
[16] |
FARAN E, GOTMAN I, GUTMANAS E Y.Experimental study of the reaction zone at boron nitride ceramic-Ti metal interface[J].Materials Science and Engineering:A, 2000, 288(1):66-74.
|
[17] |
CHEN G Y, GAO P Y, KANG J Y, et al.Improved stability of BaZrO3 refractory with Y2O3 additive and its interaction with titanium melts[J].Journal of Alloys and Compounds, 2017, 726:403-409.
|
[18] |
CHEN G Y, LAN B B, XIONG F H, et al.Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible[J].Vacuum, 2019, 159:293-298.
|
[19] |
LI K, CHEN G Y, ZHANG H, et al.Microstructure evolution of directionally solidified Ti-46Al-8Nb alloy in the BaZrO3-based mould[J]. Materials Research Express, 2018, 5(11):116529.
|
[20] |
CHEN G, PENG Y B, ZHENG G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J].Nature Materials, 2016, 15(8):876-881.
|
[21] |
JUNG I S, JANG H S, OH M H, et al.Microstructure control of TiAl alloys containing β stabilizers by directional solidification[J].Materials Science and Engineering:A, 2002, 329/330/331:13-18.
|
[22] |
YAMAGUCHI M, JOHNSON D R, LEE H N, et al.Directional solidification of TiAl-base alloys[J].Intermetallics, 2000, 8(5/6):511-517.
|
[23] |
陈光, 陈奉锐, 祁志祥, 等.聚片孪生TiAl单晶及其应用展望[J].振动.测试与诊断, 2019, 39(5):915-926.
CHEN G, CHEN F R, QI Z X, et al. PST TiAl single crystal and its application prospect[J].Journal of Vibration, Measurement & Diagnosis, 2019, 39(5):915-926.
|
[24] |
DING X F, LIN J P, ZHANG L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J].Acta Materialia, 2012, 60(2):498-506.
|
[25] |
LIU T, LUO L S, SU Y Q, et al.Lamellar orientation control of Ti-47Al-0.5W-0.5Si by directional solidification using β seeding technique[J].Intermetallics, 2016, 73:1-4.
|
[26] |
LI K, XIONG F H, CHEN G Y, et al.Directional solidification of Ti-46Al-8Nb alloy in BaZrO3 coated Al2O3 composite mould[J].Intermetallics, 2018, 102:106-113.
|
[27] |
GOTO K, HANAGIRI S, KOHNO K, et al. Progress and perspective of refractory technology[J]. Nippon Steel Technical Report, 2013, 104:21-25.
|
[28] |
IMAYEV R M, IMAYEV V M, OEHRING M, et al.Alloy design concepts for refined gamma titanium aluminide based alloys[J]. Intermetallics, 2007, 15(4):451-460.
|
[29] |
DING X F, LIN J P, ZHANG L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J].Scripta Materialia, 2011, 65(1):61-64.
|
[30] |
BURGERS W G, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1:561-586.
|
[31] |
BLACKBURN M J.Some aspects of phase transformations in titanium alloys[M]//Science, Technology and Application of Titanium. London:Oxford Pergamon Press Ltd., 1970:633-643.
|