• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
YU Yifan, TIAN Jun, LIU Tao, CAI Xiaokang, LIU Chao, DAI Pinqiang. Effect of CoCrFeNiWx High Entropy Alloy Binder on Microstructure and Mechanical Properties of WC Cemented Carbide[J]. Materials and Mechanical Engineering, 2023, 47(2): 14-20,25. DOI: 10.11973/jxgccl202302003
Citation: YU Yifan, TIAN Jun, LIU Tao, CAI Xiaokang, LIU Chao, DAI Pinqiang. Effect of CoCrFeNiWx High Entropy Alloy Binder on Microstructure and Mechanical Properties of WC Cemented Carbide[J]. Materials and Mechanical Engineering, 2023, 47(2): 14-20,25. DOI: 10.11973/jxgccl202302003

Effect of CoCrFeNiWx High Entropy Alloy Binder on Microstructure and Mechanical Properties of WC Cemented Carbide

More Information
  • Received Date: November 21, 2021
  • Revised Date: October 25, 2022
  • CoCrFeNiWx(x=0.2, 0.5, mole fraction/%) high entropy alloy powder was prepared by mechanical alloying method. The powder was mixed with WC powder as a binder (adding mass fraction was 6%, 10%, 14%, respectively), and then WC cemented carbides were obtained by spark plasma sintering. The effect of the high entropy alloy binder on the microstructure and mechanical properties of the cemented carbide was studied. The results show that the CoCrFeNiWx high entropy alloy binder had a face-centered cubic and body-centered cubic dual-phase structure and could refine grains in WC cemented carbides. With the increase of high entropy alloy binder content, the Vickers hardness of the WC cemented carbide decreased, and the fracture toughness and bending strength had a general increase trend. The WC cemented carbide prepared by adding 10wt% CoCrFeNiW0.2 high entropy alloy binder had the best comprehensive performance, with Vickers hardness of 1 785 HV, fracture toughness of 10.6 MPa·m1/2, and bending strength of 1 373 MPa.
  • [1]
    羊建高, 谭敦强, 陈颢.硬质合金[M].长沙:中南大学出版社, 2012.

    YANG J G, TAN D Q, CHEN H.Cemented carbide[M].Changsha:Central South University Press, 2012.
    [2]
    YEH J W, CHEN S K, LIN S J, et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials, 2004, 6(5):299-303.
    [3]
    CHEN C S, YANG C C, CHAI H Y, et al.Novel cermet material of WC/multi-element alloy[J].International Journal of Refractory Metals and Hard Materials, 2014, 43:200-204.
    [4]
    LUO W Y, LIU Y Z, SHEN J J.Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%AlxCoCrCuFeNi composites by spark plasma sintering[J].Journal of Alloys and Compounds, 2019, 791:540-549.
    [5]
    ZHOU P F, XIAO D H, YUAN T C.Comparison between ultrafine-grained WC-Co and WC-HEA-cemented carbides[J].Powder Metallurgy, 2017, 60(1):1-6.
    [6]
    朱心昆, 林秋实, 陈铁力, 等.机械合金化的研究及进展[J].粉末冶金技术, 1999, 17(4):291-296.

    ZHU X K, LIN Q S, CHEN T L, et al.Research and progress in mechanical alloying[J].Powder Metallurgy Technology, 1999, 17(4):291-296.
    [7]
    NIU Z Z, XU J, WANG T, et al.Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW<i>x (x=0, 0.2, 0.5) high entropy alloys[J].Intermetallics, 2019, 112:106550.
    [8]
    LUO W Y, LIU Y Z, LUO Y, et al.Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering[J].Journal of Alloys and Compounds, 2018, 754:163-170.
    [9]
    LIN C M, TSAI C W, HUANG S M, et al.New TiC/Co1.5CrFeNi1.5Ti0.5 cermet with slow TiC coarsening during sintering[J].JOM, 2014, 66(10):2050-2056.
    [10]
    MOON H, KIM B K, L KANG S J.Growth mechanism of round-edged NbC grains in Co liquid[J].Acta Materialia, 2001, 49(7):1293-1299.
    [11]
    BENJAMIN J S, VOLIN T E.The mechanism of mechanical alloying[J].Metallurgical Transactions, 1974, 5(8):1929-1934.
    [12]
    SIGL L S, MATAGA P A, DALGLEISH B J, et al.On the toughness of brittle materials reinforced with a ductile phase[J].Acta Metallurgica, 1988, 36(4):945-953.
    [13]
    BAI T, XIE T T.Fabrication and mechanical properties of WC-Al2O3 cemented carbide reinforced by CNTs[J].Materials Chemistry and Physics, 2017, 201:113-119.
    [14]
    张鸿, 宋迎东.陶瓷基复合材料基体裂纹偏转能量释放率研究[J].航空动力学报, 2007, 22(10):1730-1736.

    ZHANG H, SONG Y D.Study of energy release rates for crack deflection of ceramic matrix composites[J].Journal of Aerospace Power, 2007, 22(10):1730-1736.
    [15]
    GERMAN R M, SURI P, PARK S J.Review:Liquid phase sintering[J].Journal of Materials Science, 2009, 44(1):1-39.
    [16]
    JI W, FU Z Y, WANG W M, et al.Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy[J].Journal of Alloys and Compounds, 2014, 589:61-66.

Catalog

    Article views (7) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return