Citation: | SANG Wenya, MA Libing, JI Mingyue. Effect of Grain Size on Tensile Properties at Different Temperatures of 304L Stainless Steel[J]. Materials and Mechanical Engineering, 2023, 47(2): 44-49. DOI: 10.11973/jxgccl202302008 |
[1] |
CHIANG W C, TSENG I S, MØLLER P, et al.Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J].Materials Chemistry and Physics, 2010, 119(1/2):123-130.
|
[2] |
HONG I T, KOO C H.Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J].Materials Science and Engineering:A, 2005, 393(1/2):213-222.
|
[3] |
LALEH M, HUGHES A E, XU W, et al.On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting[J].Corrosion Science, 2019, 161:108189.
|
[4] |
DESU R K, NITIN KRISHNAMURTHY H, BALU A, et al.Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures[J].Journal of Materials Research and Technology, 2016, 5(1):13-20.
|
[5] |
ASTEMAN H, SVENSSON J, JOHANSSON L.Evidence for chromium evaporation influencing the oxidation of 304L:The effect of temperature and flow rate[J].Oxidation of Metals, 2002, 57:193-216.
|
[6] |
ABREU C M, CRISTÓBAL M J, LOSADA R, et al.The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels[J].Electrochimica Acta, 2006, 51(15):2991-3000.
|
[7] |
SALUJA R, MOEED K.The emphasis of phase transformations and alloying constituents on hot cracking susceptibility of type 304L and 316L stainless steel welds[J]. International Journal of Engineering Science and Technology, 2012, 4(5):2206-2216.
|
[8] |
WANG X Y, LI D Y.Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel[J].Wear, 2003, 255(7/8/9/10/11/12):836-845.
|
[9] |
HUANG C X, HU W P, WANG Q Y, et al.An ideal ultrafine-grained structure for high strength and high ductility[J].Materials Research Letters, 2015, 3(2):88-94.
|
[10] |
LI Z M, TASAN C C, PRADEEP K G, et al.A TRIP-assisted dual-phase high-entropy alloy:Grain size and phase fraction effects on deformation behavior[J].Acta Materialia, 2017, 131:323-335.
|
[11] |
VINOGRADOV A.Mechanical properties of ultrafine-grained metals:New challenges and perspectives[J].Advanced Engineering Materials, 2015, 17(12):1710-1722.
|
[12] |
EASTON M A, QIAN M, PRASAD A, et al.Recent advances in grain refinement of light metals and alloys[J].Current Opinion in Solid State and Materials Science, 2016, 20(1):13-24.
|
[13] |
JOO S H, KATO H, JANG M J, et al.Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering[J].Journal of Alloys and Compounds, 2017, 698:591-604.
|
[14] |
ZHU Y T, LIAO X Z, WU X L, et al.Grain size effect on deformation twinning and detwinning[J].Journal of Materials Science, 2013, 48(13):4467-4475.
|
[15] |
VALIEV R.Nanostructuring of metals by severe plastic deformation for advanced properties[J].Nature Materials, 2004, 3(8):511-516.
|
[16] |
胡韶华, 陈志永, 李冰峰, 等.热处理对挤压变形Mg-12Gd-3Y-0.6Zr合金力学性能及显微组织的影响[J].热加工工艺, 2011, 40(22):151-153.
HU S H, CHEN Z Y, LI B F, et al.Effects of heat treatment on microstructure and mechanical properties of Mg-12Gd-3Y-0.6Zr alloy as-extruded[J].Hot Working Technology, 2011, 40(22):151-153.
|
[17] |
姚泽, 钟立伟, 冯朝辉, 等.温度对2297-T87铝锂合金拉伸性能的影响及不同温度拉伸后的显微组织[J].机械工程材料, 2019, 43(5):54-57.
YAO Z, ZHONG L W, FENG Z H, et al.Effect of temperature on tensile properties and microstructure after tensile at different temperatures of 2297-T87 Al-Li alloy[J].Materials for Mechanical Engineering, 2019, 43(5):54-57.
|
[18] |
MISRA R D K, NAYAK S, MALI S A, et al.On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel[J].Metallurgical and Materials Transactions A, 2009, 41(1):3-12.
|
[19] |
MISRA R D K, NAYAK S, MALI S A, et al.Microstructure and deformation behavior of phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel[J].Metallurgical and Materials Transactions A, 2009, 40(10):2498-2509.
|
[20] |
MISRA R D K, SHAH J S, MALI S, et al.Phase reversion induced nanograined austenitic stainless steels:Microstructure, reversion and deformation mechanisms[J].Materials Science and Technology, 2013, 29(10):1185-1192.
|
[21] |
MISRA R D K, CHALLA V S A, VENKATSURYA P K C, et al.Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy[J].Acta Materialia, 2015, 84:339-348.
|
[22] |
CHEN Q Z, DUGGAN B J.On cells and microbands formed in an interstitial-free steel during cold rolling at low to medium reductions[J].Metallurgical and Materials Transactions A, 2004, 35(11):3423-3430.
|
[23] |
MOUSSA C, BERNACKI M, BESNARD R, et al.About quantitative EBSD analysis of deformation and recovery substructures in pure tantalum[J].IOP Conference Series:Materials Science and Engineering, 2015, 89:012038.
|
[24] |
WILLIAMSON G K, SMALLMAN R E.III.Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum[J].Philosophical Magazine, 1956, 1(1):34-46.
|
[25] |
MURR L E.Dislocation ledge sources:Dispelling the myth of frank-read source importance[J].Metallurgical and Materials Transactions A, 2016, 47(12):5811-5826.
|