• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHOU Leilei, XIONG Xuegang, CHEN Shu, ZHOU Xiaoting, HUANG Jie, HU Xiao. Effect of Deformation Amount in Recrystallization Zone on Microstructure and Texture of X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2023, 47(2): 50-53,60. DOI: 10.11973/jxgccl202302009
Citation: ZHOU Leilei, XIONG Xuegang, CHEN Shu, ZHOU Xiaoting, HUANG Jie, HU Xiao. Effect of Deformation Amount in Recrystallization Zone on Microstructure and Texture of X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2023, 47(2): 50-53,60. DOI: 10.11973/jxgccl202302009

Effect of Deformation Amount in Recrystallization Zone on Microstructure and Texture of X80 Pipeline Steel

More Information
  • Received Date: April 11, 2022
  • Revised Date: January 08, 2023
  • One-pass rolling deformation was carried out on X80 pipeline steel with a thermal simulator in the recrystallization zone (1 000℃), and the deformation amount was 25%, 30%, 35%, 40%, respectively. The effect of deformation amounts on the microstructure, grain misorientation, grain size and texture was studied. The results show that the microstructures of the tested steel under different deformation amounts were mainly martensite, and bainite appeared when the deformation amount increased to 35% and above. With the increase of deformation amounts, the grain misorientation distribution had no obvious change, and the grain size became finer and more uniform. Increasing the deformation amount could reduce the intensity of the recrystallization texture {110}〈110〉, meanwhile the deformation texture such as {112}〈110〉 appeared.
  • [1]
    李岩, 唐兴昌, 张有余.高级别管线钢等温相变动力学研究[J].中国冶金, 2015, 25(12):40-44.

    LI Y, TANG X C, ZHANG Y Y.Austenite isothermal transformation kinetics of high grade pipeline steel[J].China Metallurgy, 2015, 25(12):40-44.
    [2]
    孔君华.高钢级X80管线钢工艺、组织与性能的研究[D].武汉:华中科技大学, 2005.

    KONG J H.Research on processing, microstructure and properties of X80 high grade pipeline steel[D].Wuhan:Huazhong University of Science and Technology, 2005.
    [3]
    MANDAL G, GHOSH S K, CHAKRABARTI D, et al.Effects of thermo-mechanical process parameters on microstructure and crystallographic texture of high Ni-Mo ultrahigh strength steel[J].Metallography, Microstructure, and Analysis, 2018, 7(2):222-238.
    [4]
    彭黄涛.X80管线钢焊接接头组织的氢损伤行为研究[D].北京:中国石油大学(北京), 2018.

    PENG H T.Study on hydrogen damage behavior of X80 pipeline steel welded joints[D].Beijing:China University of Petroleum (Beijing), 2018.
    [5]
    王明明, 高秀华, 杜林秀, 等.V-N微合金化X80抗大变形管线钢的组织与力学性能[J].东北大学学报(自然科学版), 2020, 41(6):801-806.

    WANG M M, GAO X H, DU L X, et al.Microstructure and mechanical properties of V-N microalloyed X80 high deformability pipeline steel[J].Journal of Northeastern University (Natural Science), 2020, 41(6):801-806.
    [6]
    刘英义, 周国十, 何隽, 等.X80管线钢土壤模拟溶液腐蚀行为[J].金属热处理, 2016, 41(5):181-185.

    LIU Y Y, ZHOU G S, HE J, et al.Corrosion behavior of X80 pipeline steel in simulated soil solution[J].Heat Treatment of Metals, 2016, 41(5):181-185.
    [7]
    张骁勇, 高惠临, 徐学利, 等.X80大变形管线钢的变形与断裂行为[J].材料热处理学报, 2014, 35(2):75-81.

    ZHANG X Y, GAO H L, XU X L, et al.Deformation and fracture behavior of X80 pipeline steel with excellent deformability[J].Transactions of Materials and Heat Treatment, 2014, 35(2):75-81.
    [8]
    杨永和, 李珞, 徐震, 等.X80管线钢疲劳裂纹的扩展行为[J].机械工程材料, 2015, 39(8):75-78.

    YANG Y H, LI L, XU Z, et al.Fatigue crack growth behavior of X80 pipeline steel[J].Materials for Mechanical Engineering, 2015, 39(8):75-78.
    [9]
    牛涛, 姜永文, 李飞, 等.TMCP工艺对高韧性X90管线钢组织性能的影响[J].材料研究学报, 2015, 29(12):948-954.

    NIU T, JIANG Y W, LI F, et al.Effect of thermo-mechanical control processing on microstructure and properties of high toughness X90 pipeline steel[J].Chinese Journal of Materials Research, 2015, 29(12):948-954.
    [10]
    WU Q L, HE S Y, HU P, et al.Effect of finish rolling temperature on microstructure and mechanical properties of X80 pipeline steel by on-line quenching[J].Materials Science and Engineering:A, 2023, 862:144496.
    [11]
    CALCAGNOTTO M, ADACHI Y, PONGE D, et al.Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging[J].Acta Materialia, 2011, 59(2):658-670.
    [12]
    ZHOU X G, LI H, CHEN Q Y, et al.Controlled rolling of X80 pipeline steel in the austenite recrystallization temperature region and its effect on the microstructure and mechanical properties[J].Steel Research International, 2022, 93(1):2100331.
    [13]
    DUAN H, SHAN Y Y, YANG K, et al.Effect of rare earth and cooling process on microstructure and mechanical properties of an ultra-cleaned X80 pipeline steel[J].Acta Metallurgica Sinica (English Letters), 2021, 34(5):639-648.
    [14]
    LI L F, SONG B, CHENG J, et al.Effects of cooling processes on microstructure and susceptibility of hydrogen-induced cracking of X80 pipeline steel[J].Materials and Corrosion, 2018, 69(5):590-600.
    [15]
    RAMIREZ M F G, HERNÁNDEZ J W C, LADINO D H, et al.Effects of different cooling rates on the microstructure, crystallographic features, and hydrogen induced cracking of API X80 pipeline steel[J].Journal of Materials Research and Technology, 2021, 14:1848-1861.
  • Related Articles

    [1]ZHANG Jin, HUANG Yuntao, YUE Xinyan, ZHANG Cuiping, RU Hongqiang. Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites[J]. Materials and Mechanical Engineering, 2023, 47(1): 70-75. DOI: 10.11973/jxgccl202301010
    [2]LIU Gui-min, LI Bin, YAN Tao, ZHENG Xiao-hui, DING Hua-dong. Microstructure and Properties of Al2O3/Cu Composite Prepared by Reaction Milling Following Sintering[J]. Materials and Mechanical Engineering, 2015, 39(1): 63-67.
    [3]QIAN Jun. Microwave Dielectric Properties of Ceria Composite Lanthanum Sodium Titanate Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2013, 37(3): 73-76.
    [4]ZHANG Jian-zhu, ZHAO Jie, LU Cui-min, WU Yu-qiang, MA Yong-chang, LIU Qing-suo. Effect of Vacuum Annealing on the Dielectric Properties of La1.5Sr0.5NiO4-δ Ceramic[J]. Materials and Mechanical Engineering, 2011, 35(11): 69-72.
    [5]LEI Shen-Hui, ZHENG Xing-hua, TANG De-ping, LIN Jia. xStructure and Dielectric Properties of xSrTiO3-(1-x)LaAlO3 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2011, 35(10): 84-87.
    [6]XU Peng, CHEN Xing, YANG Jian, QIU Tai. Effect of Sintering Additive La2O3 Content on Properties of Si3N4-AlN Composite Ceramics Prepared by Hot-Pressing Sintering[J]. Materials and Mechanical Engineering, 2011, 35(1): 11-14.
    [7]WANG Ji-dong. Effect of Temperature on Thermal Conductivity of CuTeSeFe Alloy[J]. Materials and Mechanical Engineering, 2009, 33(4): 26-28.
    [8]LIU Teng-bin, WANG Ze-hua, FANG Xue-feng, LIN Ping-hua, SHEN Guo-jun, LU Jie. Thermal Shock Resistance of Plasma Sprayed Al2O3-TiO2/NiCoCrAlY Coatings on Aluminum Substrate[J]. Materials and Mechanical Engineering, 2006, 30(12): 19-22.
    [9]WANG Ru-yu, HUANG Jin-liang, ZHOU Huan-fu, YIN Biao, ZHAO Gao-lei. Effect of V2O5 Addition on Properties of ZnNb2O6 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(5): 66-68.
    [10]SI Min-jie, LI Qian, HUANG Jin-liang. Structure and Dielectric Properties of (Ba1-ySry)6-3xSm8+2xTi18O54 Microwave Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(1): 46-49.

Catalog

    Article views (5) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return