Citation: | ZHOU Leilei, XIONG Xuegang, CHEN Shu, ZHOU Xiaoting, HUANG Jie, HU Xiao. Effect of Deformation Amount in Recrystallization Zone on Microstructure and Texture of X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2023, 47(2): 50-53,60. DOI: 10.11973/jxgccl202302009 |
[1] |
李岩, 唐兴昌, 张有余.高级别管线钢等温相变动力学研究[J].中国冶金, 2015, 25(12):40-44.
LI Y, TANG X C, ZHANG Y Y.Austenite isothermal transformation kinetics of high grade pipeline steel[J].China Metallurgy, 2015, 25(12):40-44.
|
[2] |
孔君华.高钢级X80管线钢工艺、组织与性能的研究[D].武汉:华中科技大学, 2005.
KONG J H.Research on processing, microstructure and properties of X80 high grade pipeline steel[D].Wuhan:Huazhong University of Science and Technology, 2005.
|
[3] |
MANDAL G, GHOSH S K, CHAKRABARTI D, et al.Effects of thermo-mechanical process parameters on microstructure and crystallographic texture of high Ni-Mo ultrahigh strength steel[J].Metallography, Microstructure, and Analysis, 2018, 7(2):222-238.
|
[4] |
彭黄涛.X80管线钢焊接接头组织的氢损伤行为研究[D].北京:中国石油大学(北京), 2018.
PENG H T.Study on hydrogen damage behavior of X80 pipeline steel welded joints[D].Beijing:China University of Petroleum (Beijing), 2018.
|
[5] |
王明明, 高秀华, 杜林秀, 等.V-N微合金化X80抗大变形管线钢的组织与力学性能[J].东北大学学报(自然科学版), 2020, 41(6):801-806.
WANG M M, GAO X H, DU L X, et al.Microstructure and mechanical properties of V-N microalloyed X80 high deformability pipeline steel[J].Journal of Northeastern University (Natural Science), 2020, 41(6):801-806.
|
[6] |
刘英义, 周国十, 何隽, 等.X80管线钢土壤模拟溶液腐蚀行为[J].金属热处理, 2016, 41(5):181-185.
LIU Y Y, ZHOU G S, HE J, et al.Corrosion behavior of X80 pipeline steel in simulated soil solution[J].Heat Treatment of Metals, 2016, 41(5):181-185.
|
[7] |
张骁勇, 高惠临, 徐学利, 等.X80大变形管线钢的变形与断裂行为[J].材料热处理学报, 2014, 35(2):75-81.
ZHANG X Y, GAO H L, XU X L, et al.Deformation and fracture behavior of X80 pipeline steel with excellent deformability[J].Transactions of Materials and Heat Treatment, 2014, 35(2):75-81.
|
[8] |
杨永和, 李珞, 徐震, 等.X80管线钢疲劳裂纹的扩展行为[J].机械工程材料, 2015, 39(8):75-78.
YANG Y H, LI L, XU Z, et al.Fatigue crack growth behavior of X80 pipeline steel[J].Materials for Mechanical Engineering, 2015, 39(8):75-78.
|
[9] |
牛涛, 姜永文, 李飞, 等.TMCP工艺对高韧性X90管线钢组织性能的影响[J].材料研究学报, 2015, 29(12):948-954.
NIU T, JIANG Y W, LI F, et al.Effect of thermo-mechanical control processing on microstructure and properties of high toughness X90 pipeline steel[J].Chinese Journal of Materials Research, 2015, 29(12):948-954.
|
[10] |
WU Q L, HE S Y, HU P, et al.Effect of finish rolling temperature on microstructure and mechanical properties of X80 pipeline steel by on-line quenching[J].Materials Science and Engineering:A, 2023, 862:144496.
|
[11] |
CALCAGNOTTO M, ADACHI Y, PONGE D, et al.Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging[J].Acta Materialia, 2011, 59(2):658-670.
|
[12] |
ZHOU X G, LI H, CHEN Q Y, et al.Controlled rolling of X80 pipeline steel in the austenite recrystallization temperature region and its effect on the microstructure and mechanical properties[J].Steel Research International, 2022, 93(1):2100331.
|
[13] |
DUAN H, SHAN Y Y, YANG K, et al.Effect of rare earth and cooling process on microstructure and mechanical properties of an ultra-cleaned X80 pipeline steel[J].Acta Metallurgica Sinica (English Letters), 2021, 34(5):639-648.
|
[14] |
LI L F, SONG B, CHENG J, et al.Effects of cooling processes on microstructure and susceptibility of hydrogen-induced cracking of X80 pipeline steel[J].Materials and Corrosion, 2018, 69(5):590-600.
|
[15] |
RAMIREZ M F G, HERNÁNDEZ J W C, LADINO D H, et al.Effects of different cooling rates on the microstructure, crystallographic features, and hydrogen induced cracking of API X80 pipeline steel[J].Journal of Materials Research and Technology, 2021, 14:1848-1861.
|
[1] | ZHANG Jin, HUANG Yuntao, YUE Xinyan, ZHANG Cuiping, RU Hongqiang. Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites[J]. Materials and Mechanical Engineering, 2023, 47(1): 70-75. DOI: 10.11973/jxgccl202301010 |
[2] | LIU Gui-min, LI Bin, YAN Tao, ZHENG Xiao-hui, DING Hua-dong. Microstructure and Properties of Al2O3/Cu Composite Prepared by Reaction Milling Following Sintering[J]. Materials and Mechanical Engineering, 2015, 39(1): 63-67. |
[3] | QIAN Jun. Microwave Dielectric Properties of Ceria Composite Lanthanum Sodium Titanate Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2013, 37(3): 73-76. |
[4] | ZHANG Jian-zhu, ZHAO Jie, LU Cui-min, WU Yu-qiang, MA Yong-chang, LIU Qing-suo. Effect of Vacuum Annealing on the Dielectric Properties of La1.5Sr0.5NiO4-δ Ceramic[J]. Materials and Mechanical Engineering, 2011, 35(11): 69-72. |
[5] | LEI Shen-Hui, ZHENG Xing-hua, TANG De-ping, LIN Jia. xStructure and Dielectric Properties of xSrTiO3-(1-x)LaAlO3 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2011, 35(10): 84-87. |
[6] | XU Peng, CHEN Xing, YANG Jian, QIU Tai. Effect of Sintering Additive La2O3 Content on Properties of Si3N |
[7] | WANG Ji-dong. Effect of Temperature on Thermal Conductivity of CuTeSeFe Alloy[J]. Materials and Mechanical Engineering, 2009, 33(4): 26-28. |
[8] | LIU Teng-bin, WANG Ze-hua, FANG Xue-feng, LIN Ping-hua, SHEN Guo-jun, LU Jie. Thermal Shock Resistance of Plasma Sprayed Al2O3-TiO2/NiCoCrAlY Coatings on Aluminum Substrate[J]. Materials and Mechanical Engineering, 2006, 30(12): 19-22. |
[9] | WANG Ru-yu, HUANG Jin-liang, ZHOU Huan-fu, YIN Biao, ZHAO Gao-lei. Effect of V2O5 Addition on Properties of ZnNb2O6 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(5): 66-68. |
[10] | SI Min-jie, LI Qian, HUANG Jin-liang. Structure and Dielectric Properties of (Ba1-ySry)6-3xSm8+2xTi18O54 Microwave Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(1): 46-49. |