• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
DING Xiao, DU Xiaojie, MA Xinyuan, XU Zhenlin, ZHANG Wei, HE Yizhu. Corrosion Behavior of High Corrosion Resistant Fe-Cr-Ni Medium-Entropy Alloy in H2SO4 Solution[J]. Materials and Mechanical Engineering, 2023, 47(2): 54-60. DOI: 10.11973/jxgccl202302010
Citation: DING Xiao, DU Xiaojie, MA Xinyuan, XU Zhenlin, ZHANG Wei, HE Yizhu. Corrosion Behavior of High Corrosion Resistant Fe-Cr-Ni Medium-Entropy Alloy in H2SO4 Solution[J]. Materials and Mechanical Engineering, 2023, 47(2): 54-60. DOI: 10.11973/jxgccl202302010

Corrosion Behavior of High Corrosion Resistant Fe-Cr-Ni Medium-Entropy Alloy in H2SO4 Solution

More Information
  • Received Date: November 10, 2021
  • Revised Date: October 24, 2022
  • A low-cost Fe-Cr-Ni medium-entropy alloy was developed. The corrosion resistance of the medium-entropy alloy in a 0.1 mol·L-1 H2SO4 solution was studied by comparing with that of 316L stainless steel, and the protective ability of the surface passive film was analyzed. The results show that comparing with 316L stainless steel, the test alloy had a higher free-corrosion potential and a smaller free-corrosion current density, indicating the stronger corrosion resistance, slower corrosion rates and better corrosion resistance. Comparing with those of 316L stainless steel, the content of chromium and nickel in the passive film on surface of the test alloy was higher, and the content of iron and manganese was lower; the charge transfer resistance was 8.1 times that of 316L stainless steel. This showed that a more protective passive film was formed on surface of the alloy. The test alloy had a stable single-phase face-centered cubic solid solution structure, and the degree of element segregation was low, which improved the passivation ability and reduced the corrosion sensitivity of the alloy, thus ensuring the stability and protection ability of the passive film.
  • [1]
    YANG T, ZHAO Y L, TONG Y, et al.Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J].Science, 2018, 362(6417):933-937.
    [2]
    GUO N N, WANG L, LUO L S, et al.Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound[J].Journal of Alloys and Compounds, 2016, 660:197-203.
    [3]
    LU Y P, GAO X Z, JIANG L, et al.Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J].Acta Materialia, 2017, 124:143-150.
    [4]
    李安敏, 黄宇炜, 陈若怀, 等.NixAlTiCrFeCoCu高熵合金的显微组织与性能[J].机械工程材料, 2017, 41(5):53-58.

    LI A M, HUANG Y W, CHEN R H, et al.Microstructure and properties of NixAlTiCrFeCoCu high entropy alloys[J].Materials for Mechanical Engineering, 2017, 41(5):53-58.
    [5]
    NAGASE T, RACK P D, NOH J H, et al.In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM)[J].Intermetallics, 2015, 59:32-42.
    [6]
    LU Y P, HUANG H F, GAO X Z, et al.A promising new class of irradiation tolerant materials:Ti2ZrHfV0.5Mo0.2 high-entropy alloy[J].Journal of Materials Science & Technology, 2019, 35(3):369-373.
    [7]
    SHI Y Z, YANG B, XIE X, et al.Corrosion of AlxCoCrFeNi high-entropy alloys:Al-content and potential scan-rate dependent pitting behavior[J].Corrosion Science, 2017, 119:33-45.
    [8]
    刘灯宪, 彭琼, 吴波, 等.AlCoCrFe1.5Ni高熵合金的显微组织与性能[J].机械工程材料, 2016, 40(10):55-59.

    LIU D X, PENG Q, WU B, et al.Microstructure and properties of AlCoCrFe1.5Ni high entropy alloy[J].Materials for Mechanical Engineering, 2016, 40(10):55-59.
    [9]
    尚建路, 程从前, 王锐, 等.AlCrFeNi多主元高熵合金的高温性能[J].机械工程材料, 2014, 38(2):72-75.

    SHANG J L, CHENG C Q, WANG R, et al.High temperature property of AlCrFeNi multi-principal element high entropy alloy[J].Materials for Mechanical Engineering, 2014, 38(2):72-75.
    [10]
    FU Y, LI J, LUO H, et al.Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J].Journal of Materials Science & Technology, 2021, 80:217-233.
    [11]
    LUO H, ZOU S W, CHEN Y H, et al.Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J].Corrosion Science, 2020, 163:108287.
    [12]
    SATHYANARAYANA RAJU C V, VENUGOPAL D, SRIKANTH P R, et al.Effect of aluminum addition on the properties of CoCuFeNiTi high entropy alloys[J].Materials Today:Proceedings, 2018, 5(13):26823-26828.
    [13]
    LUO H, LI Z M, MINGERS A M, et al.Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J].Corrosion Science, 2018, 134:131-139.
    [14]
    WONG S K, SHUN T T, CHANG C H, et al.Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys[J].Materials Chemistry and Physics, 2018, 210:146-151.
    [15]
    TORBATI-SARRAF H, SHABANI M, JABLONSKI P D, et al.The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi high entropy alloy at different temperatures[J].Materials & Design, 2019, 184:108170.
    [16]
    FENG K, ZHANG Y, LI Z G, et al.Corrosion properties of laser cladded CrCoNi medium entropy alloy coating[J].Surface and Coatings Technology, 2020, 397:126004.
    [17]
    ZHOU Y, ZHOU D, JIN X, et al.Design of non-equiatomic medium-entropy alloys[J].Scientific Reports, 2018, 8:1236.
    [18]
    YE Y F, WANG Q, LU J, et al.Design of high entropy alloys:A single-parameter thermodynamic rule[J].Scripta Materialia, 2015, 104:53-55.
    [19]
    SCHAEFFLER A L. Selection of austenitic electrodes for welding dissimilar metals[J]. Weld Journal, 1947, 26:601-620.
    [20]
    DI SCHINO A, KENNY J.Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels[J].Journal of Materials Science Letters, 2002, 21:1631-1634.
    [21]
    RALSTON K D, BIRBILIS N, DAVIES C H J.Revealing the relationship between grain size and corrosion rate of metals[J].Scripta Materialia, 2010, 63(12):1201-1204.
    [22]
    RAJA K S, NAMJOSHI S A, MISRA M.Improved corrosion resistance of Ni-22Cr-13Mo-4W alloy by surface nanocrystallization[J].Materials Letters, 2005, 59(5):570-574.
    [23]
    WANG X Y, LI D Y.Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel[J].Electrochimica Acta, 2002, 47(24):3939-3947.
    [24]
    SUN Y P, WANG Z, YANG H J, et al.Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys[J].Journal of Alloys and Compounds, 2020, 842:155825.
    [25]
    TSAU C H, LIN S X, FANG C H.Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys[J].Materials Chemistry and Physics, 2017, 186:534-540.
    [26]
    SUN Y P, LAN A D, JIN X, et al.Comparison of electrochemical behaviour between La-free and La-containing CrMnFeNi HEA by Mott-Schottky analysis and EIS measurements[J].Corrosion Engineering, Science and Technology, 2021, 56(2):171-178.
    [27]
    WANG Y, JIN J S, ZHANG M, et al.Influence of plastic deformation on the corrosion behavior of CrCoFeMnNi high entropy alloy[J].Journal of Alloys and Compounds, 2022, 891:161822.
    [28]
    WANG J Y, LI W H, YANG H L, et al.Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions[J].Corrosion Science, 2020, 177:108973.
    [29]
    魏琳, 王志军, 吴庆峰, 等.Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J].金属学报, 2019, 55(7):840-848.

    WEI L, WANG Z J, WU Q F, et al.Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMox high-entropy alloy in NaCl solution[J].Acta Metallurgica Sinica, 2019, 55(7):840-848.
    [30]
    DELLA ROVERE C A, ALANO J H, SILVA R, et al.Characterization of passive films on shape memory stainless steels[J].Corrosion Science, 2012, 57:154-161.
    [31]
    RAY M, SINGH V B.Effect of sulfuric acid on corrosion and passivation of 316 SS in organic solution[J].Journal of the Electrochemical Society, 2011, 158(11):C359.
    [32]
    KOCIJAN A, MERL D K, JENKO M.The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride[J].Corrosion Science, 2011, 53(2):776-783.
    [33]
    CHAO C Y, LIN L F, MACDONALD D D.A point defect model for anodic passive films:I.Film growth kinetics[J].Journal of the Electrochemical Society, 1981, 128(6):1187-1194.
    [34]
    MARCELIN S, PÉBōRE N, RÉGNIER S.Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution[J].Electrochimica Acta, 2013, 87:32-40.
    [35]
    ZHANG Y S, ZHU X M.Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al steels in aqueous solutions[J].Corrosion Science, 1999, 41(9):1817-1833.
    [36]
    杨海欧, 尚旭亮, 王理林, 等.单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J].金属学报, 2018, 54(6):905-910.

    YANG H O, SHANG X L, WANG L L, et al.Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution[J].Acta Metallurgica Sinica, 2018, 54(6):905-910.
    [37]
    OLSSON C O A, LANDOLT D.Passive films on stainless steels:Chemistry, structure and growth[J].Electrochimica Acta, 2003, 48(9):1093-1104.
    [38]
    ILEVBARE G O, BURSTEIN G T.The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels[J].Corrosion Science, 2001, 43(3):485-513.
    [39]
    BURSTEIN G T, MARSHALL P I.Growth of passivating films on scratched 304L stainless steel in alkaline solution[J].Corrosion Science, 1983, 23(2):125-137.

Catalog

    Article views (5) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return