Citation: | SHI Kexian, TIAN Genqi, WANG Miaomiao, YANG Changshun, WANG Yanfeng. Evaluation of Low Cycle Fatigue Properties of 316LN Steel for Domestic Nuclear Power Primary Pipe[J]. Materials and Mechanical Engineering, 2023, 47(5): 14-19,25. DOI: 10.11973/jxgccl202305003 |
[1] |
陈凯,杜东海,陆辉,等.用直流电压降法研究316LN不锈钢的疲劳裂纹扩展行为[J].机械工程材料,2016,40(2):7-10.
CHEN K,DU D H,LU H,et al.Research on fatigue crack growth behavior of 316LN stainless steel by direct current potential drop method[J].Materials for Mechanical Engineering,2016,40(2):7-10.
|
[2] |
郑建能,陈红宇,司晨亮,等.第三代压水堆核电站核岛一回路主管道的选材[J].大型铸锻件,2018(1):31-33.
ZHEN J N,CHEN H Y,SI C L,et al.Material selection of main piping for main loop of nuclear island of generation Ⅲ PWR nuclear power plant[J].Heavy casting and forging,2018(1):31-33.
|
[3] |
王胜龙.AP1000主管道整体锻造成形及晶粒度控制研究[D].北京:北京科技大学,2016.
WANG S L.Research on integral forging and grain size control of AP1000 primary coolant pipes[D].Beijing:University of Science and Technology Beijing,2016.
|
[4] |
李景丹.CAP1400主管道热锻过程微观组织演变行为与工艺控制[D].太原:太原科技大学,2020.
LI J D.Microstructure evolution behavior and process control of CAP1400 main pipe during hot forging[D].Taiyuan:Taiyuan University of Science and Technology,2020.
|
[5] |
郑建能,张玉,陈红宇.CAP1400主管道热段关键制造技术研究[J].大型铸锻件,2018(6):19-21.
ZHEN J N,ZHANG Y,CHEN H Y.Research on key manufacturing technology of CAP1400 main pipeline hot leg[J].Heavy casting and forging,2018(6):19-21.
|
[6] |
PRASAD REDDY G V,SANDHYA R,SANKARAN S,et al.Low cycle fatigue behavior of 316LN stainless steel alloyed with varying nitrogen content.Part II:Fatiguelifeand fracture behavior[J].Metallurgical and Materials Transactions A,2014,45(11):5057-5067.
|
[7] |
钟巍华,鱼滨涛,佟振峰,等.国产316LN不锈钢的室温低周疲劳行为研究[J].热加工工艺,2017,46(8):66-68.
ZHONG W H,YU B T,TONG Z F,et al.Research on low cycle fatigue behavior of domestic 316LN stainless steel at room temperature[J].Hot Working Technology,2017,46(8):66-68.
|
[8] |
肖青山,秦贯洲,唐毅,等.核级管道不锈钢316LN的低周疲劳特性研究[J].压力容器,2019,36(9):1-6.
XIAO Q S,QIN G Z,TANG Y,et al.Research on low-cycle fatigue characteristics of nuclear grade 316LN stainless steel pipelines[J].Pressure Vessel Technology,2019,36(9):1-6.
|
[9] |
余江山,石玉萍,陈红宇,等.CAP1400主管道整体锻造程序和晶粒度控制研究[J].大型铸锻件,2017(5):37-38.
YU J S,SHI Y P,CHEN H Y,et al.Research on controlling the integral forging and the grain size of CAP1400 main pipes[J].Heavy casting and forging,2017(5):37-38.
|
[10] |
王瑞,李景丹,任树兰,等.固溶处理对316LN不锈钢晶粒长大及力学性能的影响[J].热加工工艺,2018,47(20):218-221.
WANG R,LI J D,REN S L,et al.Effect of solution treatment on grain growth and mechanical properties of 316LN stainless steel[J].Hot Working Technology,2018,47(20):218-221.
|
[11] |
RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters: NACA-TN-902[R]. Washington: National Advisory Committee for Aeronautics, 1943.
|
[12] |
BASQUIN O H.The exponential law of endurance testing[C]//American Society for Testing and Materials Proceedings.[S.l.]:ASTM, 1910:625-630.
|
[13] |
COFFIN L F.A study of the effects of cyclic thermal stresses on a ductile metal[J].Journal of Fluids Engineering,1954,76(6):950.
|
[14] |
MANSON S S. Behavior of materials under conditions of thermal stress[C]. Michigan: University of Michigan Engineering Research Institute, 1953.
|
[15] |
REDDY G V, SANDHYA R, RAO K, et al.Influence of nitrogen alloying on dynamic strain ageing regimes in low cycle fatigue of AISI 316LN stainless steel[J].Procedia Engineering,2010,2(1):2181-2188.
|
[16] |
LANGER B F.Design of pressure vessels for low-cycle fatigue[J].Journal of Basic Engineering,1962,84(3):389-399.
|
[17] |
CHOPRA O K,SHACK W J.The effect of LWR coolant environments on the fatigue life of reactor materials: NUREG/CR6909[R].[S.l.]: U.S. NRC,2006.
|
1. |
张振,孙昊,屠业宽,瞿柯杰,马毅立,王安哲. 基于机器学习的材料疲劳和腐蚀寿命预测研究进展. 南京工程学院学报(自然科学版). 2024(01): 9-16 .
![]() | |
2. |
侍克献,王延峰,张作贵,王苗苗,田根起. 核电主管道316LN不锈钢的组织和性能. 压力容器. 2024(12): 1-7 .
![]() |