• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHAO Zhuo, HE Yuwei, WANG Lei, LIU Yang. Effect of Strain Rate on Tensile Behavior of Q460 Steel and Submerged Arc Weld Joint[J]. Materials and Mechanical Engineering, 2023, 47(12): 12-18. DOI: 10.11973/jxgccl202312003
Citation: ZHAO Zhuo, HE Yuwei, WANG Lei, LIU Yang. Effect of Strain Rate on Tensile Behavior of Q460 Steel and Submerged Arc Weld Joint[J]. Materials and Mechanical Engineering, 2023, 47(12): 12-18. DOI: 10.11973/jxgccl202312003

Effect of Strain Rate on Tensile Behavior of Q460 Steel and Submerged Arc Weld Joint

More Information
  • Received Date: October 26, 2022
  • Revised Date: October 11, 2023
  • Q460 steel was welded by submerged arc welding technology, the effect of strain rate (0.001-100 s-1) on tensile properties and fracture morphology of base material and weld joint was studied. The results show that the room temperature quasi-static (strain rate was 0.001 s-1) yield strength and tensile strength of the weld joint were close to those of the base material, but the percentage elongation after fracture decreased obviously. The yield strength and tensile strength of the base material increased with the increase of the strain rate, and was sensitive to strain rate. When the strain rate was 0.01-0.1 s-1, the yield strength and tensile strength of the weld joint were equivalent to the quasi-static strength. When the strain rate was 1-100 s-1, the strength increased obviously, that is, the strength was sensitive to high strain rate. The percentage elongation after fracture of the base material and the weld joint decreased first and then increased, and the minimum values appeared at the strain rate of 0.01, 0.1 s-1, respectively; the rate of increase of the weld joint was small. The increase of strain rate made the dimples in tensile fracture of the weld joint became smaller and shallower first and then larger and deeper, but did not change the micro-fracture mechanism. The joint fractured in ductile mode.
  • [1]
    杨杰.行走液压支架用Q550D高强度钢的焊接工艺[J].煤矿机电. 2019. 40(3):42-44.

    YANG J.Welding technology of high strength steel Q550D for hydraulic walking support[J].Colliery Mechanical & Electrical Technology. 2019. 40(3):42-44.
    [2]
    WANG W Y. YAN R. XU L.Effect of tensile-strain rate on mechanical properties of high-strength Q460 steel at elevated temperatures[J].Journal of Materials in Civil Engineering. 2020. 32(7):04020188.
    [3]
    LIU X Y. WANG Y Q. ZONG L. et al.Experimental study on mechanical properties and toughness of Q460C high-strength steel and its butt welded joint at low temperature[J].International Journal of Steel Structures. 2014. 14(3):457-469.
    [4]
    HAN X E. CHANG M. LI H F. et al.Mechanical behavior of Q460 high-strength steel under low-cycle fatigue loading[J].Advances in Civil Engineering. 2022. 2022:1-21.
    [5]
    罗文伟. 李海锋. 曹宝安.开孔Q460高强钢在大应变循环拉伸下的力学性能[J].建筑材料学报. 2021. 24(6):1291-1299.

    LUO W W. LI H F. CAO B A.Mechanical properties of open-cell Q460 high-strength steel under tensile tension in large strain cycles[J].Journal of Building Materials. 2021. 24(6):1291-1299.
    [6]
    ALIPOORAMIRABAD H. PARADOWSKA A. NAFISI S. et al.Post-weld heat treatment of API 5L X70 high strength low alloy steel welds[J].Materials. 2020. 13(24):5801.
    [7]
    PU J. YU S F. LI Y Y.Role of inclusions in flux aided backing submerged arc welding[J].Journal of Materials Processing Technology. 2017. 240:145-153.
    [8]
    冯祥利. 王磊. 刘杨.热输入对Q460钢焊接接头组织及拉伸变形行为的影响[J].东北大学学报(自然科学版). 2018. 39(4):511-515.

    FENG X L. WANG L. LIU Y.Effect of heat input on microstructure and tensile deformation behavior of Q460 steel weld joint[J].Journal of Northeastern University (Natural Science). 2018. 39(4):511-515.
    [9]
    常建伟. 王慧. 徐德录. 等.输电线路钢管塔用Q460C直缝焊管组织和性能试验研究[J].焊管. 2011. 34(4):32-35.

    CHANG J W. WANG H. XU D L. et al.Research on structure and property of Q460C longitudinal welded pipe used for steel pipe tower of transmission electricity line[J].Welded Pipe and Tube. 2011. 34(4):32-35.
    [10]
    郭魁文. 朱健. 王秉新.Q460q钢模拟焊接热影响区组织及韧性研究[J].焊接技术. 2010. 39(7):15-17.

    GUO K W. ZHU J. WANG B X.Research on microstructure and toughness in simulating welding heat-affected zone of Q460q steel[J].Welding Technology. 2010. 39(7):15-17.
    [11]
    申坤.Q460D中厚板钢材焊接试验研究[J].企业科技与发展. 2015(6):23-24.

    SHEN K.Experimental study on welding of Q460D medium thick plate steel[J].Sci-Tech & Development of Enterprise. 2015(6):23-24.
    [12]
    张申增. 孟凡炯.Q460厚钢板的焊接性研究[J].金属加工(热加工). 2009(16):34-36.

    ZHANG S Z. MENG F J.Study on weldability of Q460 thick steel plate[J].MW Metal Forming. 2009(16):34-36.
    [13]
    冯祥利. 王磊. 刘杨.Q460钢焊接接头组织及动态断裂行为的研究[J].金属学报. 2016. 52(7):787-796.

    FENG X L. WANG L. LIU Y.Study on microstructure and dynamic fracture behavior of Q460 steel welding joints[J].Acta Metallurgica Sinica. 2016. 52(7):787-796.
    [14]
    冯祥利. 王磊. 刘杨.焊接工艺对Q460钢CO2气体保护焊接头冲击断裂行为的影响[J].材料热处理学报. 2018. 39(3):159-166.

    FENG X L. WANG L. LIU Y.Effect of welding process on impact fracture behavior of CO2 gas shielded arc welding joint of Q460 steel[J].Transactions of Materials and Heat Treatment. 2018. 39(3):159-166.
    [15]
    王磊.材料的力学性能[M].4版.北京:化学工业出版社. 2022:11-31.

    WANG L.Mechanical properties of materials[M].4th ed.Beijing:Chemical Industry Press. 2022:11-31.
    [16]
    LIU X H. YUAN W J. TIAN H B. et al.Effect of the strain rate on mechanical properties and microstructure of high strength low alloy steel HC340LA[J].Applied Mechanics and Materials. 2012. 217/218/219:467-470.
    [17]
    OZTURK F. POLAT A. TOROS S. et al.Strain hardening and strain rate sensitivity behaviors of advanced high strength steels[J].Journal of Iron and Steel Research International. 2013. 20(6):68-74.
    [18]
    苑文婧. 刘晓航. 田浩彬.应变速率对低合金高强钢力学性能的影响[J].上海第二工业大学学报. 2013. 30(1):43-47.

    YUAN W J. LIU X H. TIAN H B.Effect of the strain rate on mechanical properties of high strength low alloy steel[J].Journal of Shanghai Second Polytechnic University. 2013. 30(1):43-47.
    [19]
    CADONI E. FORNI D.Strain-rate effects on S690QL high strength steel under tensile loading[J].Journal of Constructional Steel Research. 2020. 175:106348.
    [20]
    毛博文. 孙晓屿. 王武荣. 等.预应变和应变速率对HC340LA低合金高强钢力学性能的影响[J].塑性工程学报. 2014. 21(1):7-12.

    MAO B W. SUN X Y. WANG W R. et al.Effect of pre-strain and strain rates on mechanical properties of HC340LA high strength low alloy steel[J].Journal of Plasticity Engineering. 2014. 21(1):7-12.
    [21]
    SINGH N K. CADONI E. SINGHA M K. et al.Dynamic tensile behavior of multi phase high yield strength steel[J].Materials & Design. 2011. 32(10):5091-5098.
    [22]
    BOYCE B L. DILMORE M F.The dynamic tensile behavior of tough. ultrahigh-strength steels at strain-rates from 0.000 2 s-1 to 200 s-1[J].International Journal of Impact Engineering. 2009. 36(2):263-271.
    [23]
    MEYERS M A.Dynamic behavior of materials[M].Hoboken. NJ:John Wiley & Sons. 1994.
    [24]
    XU S Q. RUAN D. BEYNON J H. et al.Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading[J].Materials Science and Engineering:A. 2013. 573:132-140.
    [25]
    DONG D Y. LIU Y. YANG Y L. et al.Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding[J].Materials Science and Engineering:A. 2014. 594:17-25.
    [26]
    LIU Y. DONG D Y. WANG L. et al.Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading[J].Materials Science and Engineering:A. 2015. 627:296-305.

Catalog

    Article views (4) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return