Citation: | JIANG Chengcheng, SONG Qinglei, ZHANG Ping, LIU Xueqiang, SHEN Chengjin. Microstructure and Wear Resistance of Plasma Cladding FeCoCrNiAl0.5Ti0.5 High Entropy Alloy Coating[J]. Materials and Mechanical Engineering, 2024, 48(10): 1-8. DOI: 10.11973/jxgccl230382 |
FeCoCrNiAl0.5Ti0.5 high entropy alloy powder was prepared by mechanical alloying, and then high entropy alloy coating was prepared by plasma cladding. The microstructure of the high entropy alloy powder was studied after mechanical alloying, and the microstructure, hardness and wear resistance of the high entropy alloy coating were analyzed. The results show that the FeCoCrNiAl0.5Ti0.5 high entropy alloy powder with two-phase solid solution structure of body-centered cubic and face-centered cubic structures was formed after mechanical alloying, and the particle size was 2–4 μm. The cladded entropy alloy coating still maintained the two-phase solid solution structure, and had no obvious pores, cracks and other defects. The typical cladding microstructure of cellular crystals→dendritic crystals→equiaxed crystals were formed from cladding interface to coating surface in the high entropy alloy coating in sequence. The average microhardness of the high entropy alloy coating was 616.6 HV, which was 1.46 times that of NM400 steel. Under the same wear conditions, the wear quality loss of the high entropy coating was 48% that of NM400 steel, and the wear mechanism was mainly abrasive wear; the high entropy coating had relatively excellent wear resistance.
[1] |
郭红,刘英,李卫. 挖掘机斗齿的磨损机制与选材研究[J]. 材料导报,2014,28(7):99-103.
GUO H ,LIU Y ,LI W. The investigation of wear mechanism and material selection of bucket teeth on excavator[J]. Materials Review,2014,28(7):99-103.
|
[2] |
胡元哲. 大型矿山挖掘机斗齿磨损失效分析与抗磨措施[J]. 润滑与密封,2006,31(5):165-167.
HU Y Z. Analysis on wear failure of bucket teeth of mine excavators and the anti-wear measures[J]. Lubrication Engineering,2006,31(5):165-167.
|
[3] |
李炎粉,崔华丽. 锻压工艺对挖掘机斗齿性能的影响研究[J]. 热加工工艺,2017,46(1):140-142.
LI Y F ,CUI H L. Effect of forging process on performance of excavator bucket teeth[J]. Hot Working Technology,2017,46(1):140-142.
|
[4] |
陶勇. 挖掘机铲齿材料选择及磨损研究[J]. 铸造技术,2017,38(4):802-804.
TAO Y. Research on excavator tooth material selection and wear mechanism[J]. Foundry Technology,2017,38(4):802-804.
|
[5] |
张津超,石世宏,龚燕琪,等. 激光熔覆技术研究进展[J]. 表面技术,2020,49(10):1-11.
ZHANG J C ,SHI S H ,GONG Y Q ,et al. Research progress of laser cladding technology[J]. Surface Technology,2020,49(10):1-11.
|
[6] |
杜学芸,许金宝,宋健. 激光熔覆再制造技术研究现状及发展趋势[J]. 表面工程与再制造,2020,20(6):18-22.
DU X Y ,XU J B ,SONG J. Research status and development trend of laser cladding remanufacturing technology[J]. Surface Engineering & Remanufacturing,2020,20(6):18-22.
|
[7] |
江吉彬,练国富,许明三. 激光熔覆技术研究现状及趋势[J]. 重庆理工大学学报(自然科学),2015,29(1):27-36.
JIANG J B ,LIAN G F ,XU M S. Research on status and trend of laser cladding[J]. Journal of Chongqing University of Technology(Natural Science),2015,29(1):27-36.
|
[8] |
来佑彬,杨波,王冬阳,等. 钴基合金等离子熔覆工艺研究与优化[J]. 表面技术,2020,49(6):185-193.
LAI Y B ,YANG B ,WANG D Y ,et al. Plasma cladding process for Co-based alloy and its optimization[J]. Surface Technology,2020,49(6):185-193.
|
[9] |
YE Y F ,WANG Q ,LU J ,et al. High-entropy alloy:Challenges and prospects[J]. Materials Today,2016,19(6):349-362.
|
[10] |
王雪姣,乔珺威,吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报,2020,34(17):17058-17066.
WANG X J ,QIAO J W ,WU Y C. High entropy alloys:The new irradiation-resistant candidate materials towards the fusion reactors[J]. Materials Reports,2020,34(17):17058-17066.
|
[11] |
周正CoCr(Fe)Ni基高熵合金的深过冷研究秦皇岛燕山大学201846周正. CoCr(Fe)Ni基高熵合金的深过冷研究[D]. 秦皇岛:燕山大学,2018:4-6.
ZHOU ZStudy of the CoCr(Fe)Ni-based high-entropy alloys under supercoolingQinhuangdaoYanshan University201846ZHOU Z. Study of the CoCr(Fe)Ni-based high-entropy alloys under supercooling[D]. Qinhuangdao:Yanshan University,2018:4-6.
|
[12] |
韩志东含Ti高熵合金的结构与性能研究北京清华大学201714韩志东. 含Ti高熵合金的结构与性能研究[D]. 北京:清华大学,2017:1-4.
HAN Z DResearch on the structures and properties of Ti-containing high entropy alloysBeijingTsinghua University201714HAN Z D. Research on the structures and properties of Ti-containing high entropy alloys[D]. Beijing:Tsinghua University,2017:1-4.
|
[13] |
MISHRA R S ,HARIDAS R S ,AGRAWAL P. High entropy alloys:Tunability of deformation mechanisms through integration of compositional and microstructural domains[J]. Materials Science and Engineering:A,2021,812:141085.
|
[14] |
沙明红,张伟华,李雪,等. 合金元素对高熵合金性能影响的研究现状[J]. 辽宁科技大学学报,2020,43(3):161-166.
SHA M H ,ZHANG W H ,LI X ,et al. Effects of alloying elements on properties of high entropy alloys[J]. Journal of University of Science and Technology Liaoning,2020,43(3):161-166.
|
[15] |
吴韬,段佳伟,陈小明,等. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报,2020,34(增刊1):413-419.
WU T ,DUAN J W ,CHEN X M ,et al. Research progress of the effect of alloying element on laser cladding high-entropy alloy coatings[J]. Materials Reports,2020,34(S1):413-419.
|
[16] |
郑必举,魏金宇,蒋业华,等. 激光熔覆NiCoFeCrTi高熵合金涂层及其耐磨性能研究[J]. 激光技术,2016,40(3):432-435.
ZHENG B J ,WEI J Y ,JIANG Y H ,et al. Wear property of NiCoFeCrTi high entropy alloy coating by laser cladding[J]. Laser Technology,2016,40(3):432-435.
|
[17] |
张丽激光熔覆AlxCoCrFeNiTi0.5高熵合金涂层的制备、结构及性质鞍山辽宁科技大学2016张丽. 激光熔覆AlxCoCrFeNiTi0.5高熵合金涂层的制备、结构及性质[D]. 鞍山:辽宁科技大学,2016.
ZHANG LMicrostructure,properties and preparation of AlxCoCrFeNiTi0.5 high-entropy alloy coating by laser claddingAnshanUniversity of Science and Technology Liaoning2016ZHANG L. Microstructure,properties and preparation of AlxCoCrFeNiTi0.5 high-entropy alloy coating by laser cladding[D]. Anshan:University of Science and Technology Liaoning,2016.
|
[18] |
WANG X Y ,LIU Q ,HUANG Y B ,et al. Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding[J]. Materials,2020,13(10):2209.
|
[19] |
左润燕,孙荣禄,牛伟,等. 激光熔覆CoCrFeNiTix高熵合金涂层的组织与性能[J]. 表面技术,2022,51(3):363-370.
ZUO R Y ,SUN R L ,NIU W ,et al. Microstructure and properties of CoCrFeNiTix high entropy alloy coated by laser cladding[J]. Surface Technology,2022,51(3):363-370.
|
[20] |
王虎,王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 材料导报,2018,32(4):589-592.
WANG H ,WANG Z H. Microstructure and properties of AlxCoCrFeNi high-entropy alloys prepared by plasma cladding[J]. Materials Review,2018,32(4):589-592.
|
[21] |
王昕阳,刘谦,任海滔,等. 钛元素含量对CoCrFeNiTi高熵合金涂层硬度及耐磨性能的影响[J]. 表面技术,2023,52(1):47-55.
WANG X Y ,LIU Q ,REN H T ,et al. Effects of Ti content on hardness and wear resistance of CoCrFeNiTi high-entropy alloy coatings[J]. Surface Technology,2023,52(1):47-55.
|
[22] |
SOARE V ,BURADA M ,CONSTANTIN I ,et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films[J]. Applied Surface Science,2015,358:533-539.
|
[23] |
魏民,万强,李晓峰,等. 熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响[J]. 表面技术,2019,48(6):138-143.
WEI M ,WAN Q ,LI X F ,et al. Effect of cladding current on microstructure and properties of FeCoCrNiMn high entropy alloy coatings[J]. Surface Technology,2019,48(6):138-143.
|
[24] |
GUO S ,NG C ,LU J ,et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys[J]. Journal of Applied Physics,2011,109(10):103505.
|
[25] |
SHU F Y ,YANG B ,DONG S Y ,et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science,2018,450:538-544.
|
[26] |
范佳承,刘宁,周慧玲,等. 激光熔覆Al0.1CoCrFeNi高熵合金涂层的组织和性能[J]. 金属热处理,2020,45(12):155-159.
FAN J C ,LIU N ,ZHOU H L ,et al. Microstructure and properties of Al0.1CoCrFeNi high entropy alloy coating fabricated by laser cladding[J]. Heat Treatment of Metals,2020,45(12):155-159.
|
[27] |
DU S M ,ZHAO F ,ZHANG Y Z. Friction and wear behavior of copper-graphite composite material in high-speed sliding with current[J]. Advanced Materials Research,2012,487:411-415.
|