Citation: | CHEN Xiao-yun, LI Hua, SU Yue-zeng, HUANG Zi-shan, LIU He-zhou. CoFe2O4 Nanoparticles Synthesized by Hydro-Thermal Method and Its Magnetic Properties[J]. Materials and Mechanical Engineering, 2011, 35(7): 88-92. |
[1] |
刘吉平, 廖莉玲.无机纳米材料[M].北京: 科学出版社, 2003.
|
[2] |
MORISAKO A, SHAMS N N, MIURA Y, et al. C-axis oriented Ba-ferrite thin film with small grain for perpendicular magnetic recording[J].J Magn Mater, 2004, 272/276(3): 2191-2193.
|
[3] |
AYALA-VALENZUELA O, MATUTES-AQUINO J, BETANCOURT-GALINDO R, et al. Magnetite-cobalt ferrite nanoparticles for kerosene-based magnetic fluids[J].J Magn Mater, 2005, 294(2): 37-41.
|
[4] |
RANA S, GALLO A, SRIVASTAVA R S, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics[J].Acta Biomaterialia, 2007, 3(2): 233-242.
|
[5] |
ZHAO D L, LV Q, SHEN Z M. Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites[J]. J Alloy Compd, 2009, 480(2): 634-638.
|
[6] |
李永军, 刘河洲, 李华, 等.钡铁氧体包覆多壁碳纳米管复合材料的合成与表征[J].机械工程材料, 2010, 34(1): 88-91.
|
[7] |
成都电信工程学院.铁氧体磁性材料[M].北京: 北京科学教育出版社, 1962: 9-17.
|
[8] |
CEDEЙO-MATTEI Y, PERALES-PEREZ O. Synthesis of high-coercivity cobalt ferrite nanocrystals[J].Microelectr J, 2009, 40(4/5): 673-676.
|
[9] |
MOHAMED R M, RASHAD M M, HARAZ F A, et al. Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method[J].J Magn Mater, 2010, 322(14): 2058-2064.
|
[10] |
LEE J G, PARK J Y, KIM C S. Growth of ultra-fine cobalt ferrite particles by a sol-gel method and their magnetic prop-erties[J].J Mater Sci, 1998, 33(15): 3965-3968.
|
[11] |
BLASKOV V, PETKOV V, RUSANOV V, et al. Magnetic properties of nanophase CoFe2O4 particles[J].J Magn Mater, 1996, 162(2/3): 331-337.
|
[12] |
RAJENDRAN M, PULLAR R C, BHATTACHARYA A K, et al. Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size[J].J Magn Mater, 2001, 232(1/2): 71-83.
|
[13] |
段红珍, 李巧玲, 蔺向阳, 等.钴铁氧体纳米粒子制备及其镧掺杂的磁性能研究[J].材料科学与工艺, 2009, 17(1): 87-91.
|
[14] |
JI G B, TANG S L, REN S K, et al. Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process[J].J Cryst Growth, 2004, 270(1/2): 156-161.
|
[15] |
吕庆荣, 方庆清, 李瑞, 等.钴铁氧体纳米晶粒的结构及磁特性研究[J].安徽大学学报, 2006, 30(2): 71-74.
|
[16] |
ZHAO D, WU X, GUAN H, et al. Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles[J].J of Supercritical Fluids, 2007, 42(2): 226-233.
|
[17] |
GU B X. Magnetic properties and magneto-optical effect of Co0.5Fe2.5O4 nanostructured films[J].Appl Phys Lett, 2003, 82(21): 3707-3709.
|
[18] |
ZHAO L J, ZHANG H J, XING Y, et al. Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method[J].J Solid State Chem, 2008, 181(2): 245-252.
|
[19] |
COTE L J, TEJA A S, WILKINSON A P, et al. Continuous hydrothermal synthesis of CoFe2O4 nanoparticles[J].Fluid Phase Equilibr, 2003, 210(2): 307-317.
|
[20] |
LEE D H, KIM H S, LEE J Y, et al. Characterization of the magnetic properties and transport mechanisms of CoxFe3-xO4 spinel[J].Solid State Commun, 1995, 96(7): 445-449.
|
[21] |
金沈贤, 钟智勇, 张怀武.锰掺杂钴铁氧体粉体的磁性能和介电性能[J].硅酸盐学报, 2007, 35(7): 838-842.
|
[1] | LIU Hui, XUE Lijun, CHEN Jiangxu. Force-Magnetic Coupling Mesoscopic Model Establishment and Stress-Strain Relation Simulation of NiMnGa Alloy/Epoxy Resin Composites[J]. Materials and Mechanical Engineering, 2023, 47(7): 104-110. DOI: 10.11973/jxgccl202307017 |
[2] | LI Yuqin, XIAO Gang, LI Tao. Effect of Ultrasonic Assist on Grinding Force for TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2019, 43(7): 10-13,63. DOI: 10.11973/jxgccl201907003 |
[3] | WANG Cheng, ZHU Yangyang, NI Hongjun, SHEN Weiping, ZHU Yu. Cutting Force Simulation of Aluminum Alloy 7075 by DEFORM-3D Software and Its Selection of Fracture Criterion[J]. Materials and Mechanical Engineering, 2019, 43(2): 69-72,77. DOI: 10.11973/jxgccl201902014 |
[4] | FENG Yaoyao, WANG Qingjuan, DU Zhongze, LI Qiang, ZHOU Ying, LU Chao. Comparison of Two Rolling Force Models for 49MnVS3 Non-Quenched and Tempered Steel[J]. Materials and Mechanical Engineering, 2018, 42(7): 78-82. DOI: 10.11973/jxgccl201807016 |
[5] | ZHAO Qing, QIN Xu-da, ZHANG Xin-pei, LI Yong-hang, JI Chun-hui. Axial Cutting Force Prediction during Helical Milling of Carbon Fiber Reinforced Polymers Based on Response Surface Methodology[J]. Materials and Mechanical Engineering, 2015, 39(7): 108-112. DOI: 10.11973/jxgccl201507023 |
[6] | LIU Xian-ming, ZHANG Rui, YIN Wei-dong. Nickel Ferrite Nano-Particles Prepared by Improved Pechini Method and Its Characterization[J]. Materials and Mechanical Engineering, 2012, 36(2): 58-60. |
[7] | HUO Wen-guo, XU Jiu-hua, FU Yu-can. Grinding Force of Ti-6Al-4V Titanium Alloy during Dry Belt Grinding[J]. Materials and Mechanical Engineering, 2008, 32(12): 19-21. |
[8] | GUO Shi-hai, ZHANG Yang-huan, WANG Yu, QI Yan, WANG Xin-lin. Compositions of Iron-base Amorphous Alloys with High Saturation Induction Density[J]. Materials and Mechanical Engineering, 2008, 32(8): 50-52. |
[9] | HUANG Wei, QI Fei-xia, LI Rong, WU Jian-min. Preparation and Properties of Silicone Oil-based Magnetorheological Fluids[J]. Materials and Mechanical Engineering, 2008, 32(7): 68-69. |
[10] | LIU Jun, CHEN Zhi-gang, CHEN Chun, BI Kai. Effect of Underlay Materials and Sputtering Method on Adhesive Force of CNx Films[J]. Materials and Mechanical Engineering, 2006, 30(12): 7-10. |