• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
WANG Guan, JU Hui, LI Luo-xing, YAO Zai-qi. Nitriding Process Optimization of H13 Steel Based on Orthogonal Experiment[J]. Materials and Mechanical Engineering, 2013, 37(8): 9-14.
Citation: WANG Guan, JU Hui, LI Luo-xing, YAO Zai-qi. Nitriding Process Optimization of H13 Steel Based on Orthogonal Experiment[J]. Materials and Mechanical Engineering, 2013, 37(8): 9-14.

Nitriding Process Optimization of H13 Steel Based on Orthogonal Experiment

More Information
  • Received Date: May 11, 2013
  • The effects of the various process parameters (tempering temperature before nitriding, nitriding temperature, nitriding time and resolution ratio of NH3) on the depth and micro-hardness of H13 steel nitride layer were analyzed and compared comprehensively through the orthogonal experimental design. The optimized nitriding process was given, and was compared with the original process before optimization. Results show that nitriding temperature was the most obvious factor for the hardness of nitride layer, and with the increase of nitriding temperature, the surface hardness increased first, then decreased. Resolution ratio of NH3 was the most obvious factor for the depth of nitride layer, and with the increase of resolution ratio of NH3, the depth of nitrided layer decreased, then increased. The optimized nitriding process was obtained as following: the tempering temperature before nitriding was 560 ℃, the nitriding temperature was 535 ℃, the nitriding time was 15 h, and the resolution ratio of NH3 was 50%. Compared with original nitriding process, the nitride layer of H13 steel prepared by optimization process had a higher hardness and a larger depth.
  • [1]
    王鹏, 张杰江, 胡亚民.H13钢的应用现状[J].模具工程, 2007(10): 17-24.
    [2]
    PERSSON A, HOGMARK S, BERGSTROM J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels[J].International Journal of Fatigue, 2004, 26(5): 1095-1107.
    [3]
    MA S L, LI Y H, XU K W. The composite of nitrided steel of H13 and TiN coatings by plasma duplex treatment and the effect of pre-nitriding[J].Surface and Coatings Technology, 2001, 13(7): 116-121
    [4]
    张姣姣, 余志明, 洪瑞江, 等.H13渗氮工作气压对H13钢离子渗氮层组织及性能的影响[J].机械工程材料, 2010, 34(4): 35-37.
    [5]
    鞠慧, 李落星, 王群, 等.回火工艺对H13模具钢渗氮层的影响[J].机械工程材料, 2011, 35(4): 7-9.
    [6]
    史菲, 林香祝.1Cr18Ni9Ti钢等离子氮化工艺参数的优化[J].铸造技术, 2008, 29(11): 1601-1603.
    [7]
    李晖, 李润方, 等.离子氮化的32Cr2MoV钢离子镀膜优化工艺及组织[J].铸造技术, 2006, 27(9): 968-970.
    [8]
    AKHTAR S S, ARIF A F M, YILBAS B S. Influence of surface preparation on the kinetics of controlled gas-nitrided AISI H13 steels used in extrusion dies[J].Journal of Materials Engineering and Performance, 2009(6): 347-355.
    [9]
    余春燕, 王社斌, 侯文义, 等.氮在H13钢中的扩散行为[J].机械工程材料, 2007, 31(6): 73-75.
    [10]
    邹安全, 邓芬燕.H13钢热处理工艺实验研究[J].模具制造, 2003, 19(2): 55-57.
    [11]
    张贺, 蔡春波, 丁晖, 等.覆层的耐液态锌腐蚀性能研究[J].沈阳工业大学学报, 2004, 26(4): 389-391.
    [12]
    盛永莉.正交试验设计及其应用[J].济南大学学报, 1997(3): 69-73.
    [13]
    王延来, 刘世程, 刘德义, 等.304奥氏体不锈钢固溶渗氮的研究[J].金属热处理, 2005, 30(5): 8-11.
    [14]
    LI C X, BELL T. Principles, Mechanisms and applications of active screen plasma nitriding[J].Heat Treatment of Metals, 2003(1): 1-7.
    [15]
    李双喜, 张铁成, 张冠星, 等.金相法与硬度法测量离子渗氮层深度差异性研究[J].金属热处理, 2010, 35(9): 118-120.
    [16]
    BELL T, MAO K, SUN Y. Surface engineering design: modelling surface engineering systems for improved tribological performance[J].Surface and Coating Technology, 1998, 108/109: 360-368.
    [17]
    胡明娟, 潘健生.钢铁化学热处理原理[M].上海: 上海交通大学出版社, 1996: 19-106.
    [18]
    戚潦, 黄清珠, 吕耀坤, 等.4Cr5MoVSi钢氮化层组织结构的研究[J].理化检验: 物理分册, 1994, 30(2): 15-18.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return