Citation: | LI Yang, LIN Guan-fa, JI Ling-kang, HUO Chun-yong, FENG Yao-rong. Effect of Annealing on Texture and Fracture Separation of Rolled X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2010, 34(10): 14-18. |
[1] |
TAKEUCHI I,OKAGUCHI S,MAKINO H.Development and evaluation of high strength line pipe for high pressure gas transmission pipeline[C]//Proceedings of International Seminar on Application of High Strength Line Pipe and Integrity Assessment of Pipeline.Xi′an:[s.n.],2006.
|
[2] |
WIKOWSKI G M,WANG Y Y,RUDLAND D.Recent effect on characterizing propagation ductile fracture resistance of line pipe steels[J].Denys R Pipeline Technology,2000,1:359-386.
|
[3] |
KAZUTOSHI K,FUKDA M,SUGISAWA S.Separations occur in controlled rolled hot strips[J].Transaction ISIJ,1979,19(1):324-331.
|
[4] |
GUO W L,DONG H R,LU M X,et al.The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel[J].Inter J Pressure Vessels and Piping,2002,79(6):403-412.
|
[5] |
熊庆人,冯耀荣,霍春勇,等.X70管线钢的断口分离现象分析研究[J].机械工程材料,2005,29(12):21-25.
|
[6] |
NAKAMURA T,PARKS D M.Three dimensional stress crack front fields in a thin Ductile Plate[J].Journal of the Mechanics and Physics of Solids,1990,38(6):787-812.
|
[7] |
GORDON R,GRAY M.Preliminary dynamic fracture analysis[C]//Proceedings of International Seminar on Fracture Control Technology for X80 High Pressure Gas Transmission Pipeline,Xi′an:[s.n.],2007.
|
[8] |
DEMOFONTI G,MANNUCCI G.Arrest assessment of X100 TMCP linepipe used for high pressure gas pipipeline[C]//Proceedings of International Seminar on Fracture Control Techno-logy for X80 High Pressure Gas Transmission Pipeline.Xi′an:[s.n.],2007.
|
[9] |
FELBER S,SCHNEESEISS G,VARGA T.Crack-arrest in a pipeline Steel[C]//Proceedings of the 2nd International Pipeline Technology Conference.Ostend:[s.n.],1995.
|
[10] |
杨政,任斌,赵新伟,等.铁素体管线钢的分层裂纹及其对断裂的影响[J].材料研究学报,2007,21(3):311-318.
|
[11] |
王清江,单以银,滕华元,等.控制轧制钢中的断口分离现象[J].兵器材料科学与工程,1992,15(9):50-54.
|
[1] | CAI Xiaowen, REN Jun, LUO Xia. Semi-solid Compression Deformation Behavior and Constitutive Model Establishment of As-cast Mg-6Zn Alloy[J]. Materials and Mechanical Engineering, 2024, 48(5): 38-44. DOI: 10.11973/jxgccl202405007 |
[2] | PAN Guangyong, LUO Zhumei, LIN Chunlei. Flow Stress Constitutive Equation of As-cast GCr15SiMn Bearing Steel[J]. Materials and Mechanical Engineering, 2019, 43(10): 66-70. DOI: 10.11973/jxgccl201910013 |
[3] | YI Zhaoxiang, LI Xinhe, CHANG Shiwu, CAO Quan. Flow Stress Constitutive Equation of 2219 Aluminum Alloy During Hot Compression[J]. Materials and Mechanical Engineering, 2018, 42(7): 53-56. DOI: 10.11973/jxgccl201807011 |
[4] | ZHOU Qiu-yue, WU Xiao-dong, LIANG Yu, XIE Jian-feng, WU Shun, ZOU Lei. Hot-Compression Deformation Constitutive Equation of 60Si2CrVAT High-Strength Spring Steel[J]. Materials and Mechanical Engineering, 2017, 41(4): 29-32,57. DOI: 10.11973/jxgccl201704007 |
[5] | XU Dao-fen. Establishment of Compression Creep Constitutive Equations of Mg-4Al-2RE Alloy[J]. Materials and Mechanical Engineering, 2015, 39(5): 85-88. |
[6] | HE Jian-hong, SUN Yong, DUAN Yong-hua, FANG Dong-sheng. Effect of Deformation Conditions of Pb-Mg-Al Alloy during Hot Compression on Flow Stress and Its Constitutive Equation[J]. Materials and Mechanical Engineering, 2013, 37(3): 95-98. |
[7] | YUAN Wu-hua, FU Qiang. Flow Stress Behavior of 10B06 Cold Heading Steel Continuous Casting Billet during Hot Compress Deformation[J]. Materials and Mechanical Engineering, 2012, 36(2): 83-87. |
[8] | ZHANG Wei-weii, ZHANG Wen-fei, LUO Jiaiig-yong, ZHENG Xiao-Ping. Constitutive Equation of 7075/6009 Aluminium Composite during Hot Compression[J]. Materials and Mechanical Engineering, 2011, 35(8): 93-96. |
[9] | QUAN Guo-zheng, LIU Ke-wei, WANG Feng-biao, SONG Tao, ZHOU Yi-jun. Constitutive Model of Dynamic Softening Behavior of 7075 Aluminum Alloy during Hot Compression[J]. Materials and Mechanical Engineering, 2010, 34(10): 82-86. |
[10] | CAI Yi-ming, LI Hui-zhong, LIANG Xiao-peng, TANG Guo-jian. Thermal Compression Deformation Constitutive Equation of 7039 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2009, 33(7): 48-51. |