• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
GUO Hong-qiang. Torsional Low Cycle Fatigue Properties of 63Sn-37Pb and Sn-3Ag-0.5Cu Alloy Solders[J]. Materials and Mechanical Engineering, 2014, 38(8): 65-69.
Citation: GUO Hong-qiang. Torsional Low Cycle Fatigue Properties of 63Sn-37Pb and Sn-3Ag-0.5Cu Alloy Solders[J]. Materials and Mechanical Engineering, 2014, 38(8): 65-69.

Torsional Low Cycle Fatigue Properties of 63Sn-37Pb and Sn-3Ag-0.5Cu Alloy Solders

More Information
  • Received Date: April 14, 2014
  • The low cycle fatigue properties of 63Sn-37Pb and Sn-3Ag-0.5Cu alloy solders at torsional load were studied by torsional fatigue tester. The results show that the two solders are cyclic softening materials and their deformation is dominated by plastic deformation. The fatigue life of the alloy solders all increased with decreasing the shear strain amplitude. Moreover, the fatigue life of Sn-3Ag-0.5Cu solder was longer than that of 63Sn-37Pb solder at the same shear strain amplitude, indicating that the former had higher resistance to shear fatigue failure.
  • [1]
    戴家辉, 刘秀忠, 陈立博.无铅钎料的立法与发展[J].山东机械, 2005(1): 1-4.
    [2]
    梁文杰, 彭红建.无铅钎料的研究开发现状[J].材料导报, 2011, 25(4): 127-130.
    [3]
    ABTEW M, SELVADURAY G. Lead-free solders in micro-electronics[J].Materials Science and Engineering,2000,27: 95-141.
    [4]
    PANG J H L, XIONG B S, LOW T H.Low cycle fatigue study of lead free 99.3Sn-0.7Cu solder alloy[J].International Journal of Fatigue,2004,26: 865-872.
    [5]
    PANG J H L, LOW T H,XIONG B S,et al.Thermal cycling aging effects on Sn-Ag-Cu solder joint microstrcture[J].IMC and Strength Thin Solid Film,2004,462/463: 370-375.
    [6]
    罗艳, 高庆, 杨显杰.63Sn-37Pb钎料合金耦合损伤时相关理论模型[J].机械工程材料, 2008,32(11): 78-81.
    [7]
    CHEN Gang, CHEN Xu, NIU Chang-dong. Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates[J].Materials Science and Engineering: A,2006,421: 238-244
    [8]
    CHEN X,SONG J,KIM K S.Fatigue life of 63Sn-37Pb solder related to load drop under uniaxial torsional loading[J].International Journal of Fatigue,2006,28: 767-776.
    [9]
    BAI Ning, CHEN Xu. A new unified constitutive model with short- and long-range back stress for lead-free solders of Sn-3Ag-0.5Cu and Sn-0.7Cu[J].International Journal of Plasticity,2009,25: 2181-2203.
    [10]
    许天旱, 赵麦群, 刘新华, Sn-Ag-Cu系无铅焊锡成分的优化研究[J].电子元件与材料, 2004(8): 14-16.
    [11]
    MILLER K J,CHANDER D C.High strain torsion fatigue of solid and tubular specimens[J].Proceedings of Institution of Mechanical Engineerings,1970,24: 262-270.
    [12]
    PANG J H L,XIONG B S, LOW T H. Low cycle fatigue models for lead-free solders[J].Thin Solid Films,2004,462/463: 408-412.
    [13]
    ASTM E606 Standard practice for strain-controlled fatigue testing[S].
    [14]
    KANCHANOMAI C, MIYASHITA Y, MUTOH Y. Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn-37Pb[J].International Journal of Fatigue,2002,24: 671-683.
    [15]
    STOLKARTS V, KEER LM, FINE M E. Damage evolution governed by microcrack nucleation with application to the fatigue of 63Sn-37Pb solder[J].Journal of the Mechanics and Physics of Solids,1999,47: 2451-2468.

Catalog

    Article views (3) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return