Citation: | HOU Guo-qing, ZHU Liang, TIAN Yan-long, BIAN Hong-xia. Effect of Strain Rate on Hot Ductility of Cast Low Ni Austenitic Stainless Steel[J]. Materials and Mechanical Engineering, 2014, 38(2): 19-23. |
[1] |
ZOU D N, HAN Y, YAN D N, et al. Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel[J].Materials and Design,2012,32:4443-4448.
|
[2] |
钟政烨, 盛光敏. 200系奥氏体不锈钢热轧裂纹的产生原因及其工艺改进[J].机械工程材料,2010,34(4):79-83.
|
[3] |
MINTZ B, COWLEY A, ABUSHUSHA R. Hot ductility curve of an austenitic stainless steel and importance of dynamic recrystallization in determining ductility recovery at high temperature[J].Materials Science and Technology,1999,15(10):1179-1185.
|
[4] |
MCQUEEN H J. Elevated-temperature deformation at forming rates of 10-2 to 102 s-1[J].Metallurgical and Materials Transactions: A,2002,33(2):345-360.
|
[5] |
MINTA B, SHAKER M, CROWTHER D N. Hot ductility of an austenitic and a ferritic stainless steel[J].Materials Science and Technology,1997,13(3):243-249.
|
[6] |
SIMON G, SERGIU I, CECILIA P, et al. Influence of strain rate on hot ductility of a V-microalloyed steel slab[J].Steel Research International,2012,83(5):445-455.
|
[7] |
BYUN J, SUK K, SEO S C. Effects of strain rate and remelting on hot ductility of continuous casting slab[J].Journal of the Korean Institute of Metals and Materials,2005,43(3):188-194.
|
[8] |
RYAN N D, MCQUEEN H J. Comparison of dynamic softening in 301, 304, 316 and 317 stainless steels[J].High Temperature Technology,1990,8(3):185-200.
|
[9] |
RYAN N D, MCQUEEN H J, JONAS J J. The deformation behavior of types 304, 316, and 317 austenitic stainless steels during hot torsion[J].Canadian Metallurgical Quarterly,1983,22(3):369-378.
|
[10] |
TAN S P, WANG Z H, CHENG S C, Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel[J].Materials Science and Engineering:A,2009,517(1/2):312-315.
|
[11] |
MCQUEEN H J, YUE S, RYAN N D, et al. Hot working characteristics of steels in austenitic state[J].Journal of Materials Processing Technology,1995,53:293-310.
|
[12] |
BILMES P, GONZALES A, LLORENT A, et al. Effect of δ ferrite solidification morphology of austenitic stainless steel weld metal on properties of welded joints[J].Welding International,1996,10(10):797-808.
|
[13] |
SCHINO A D, KENNY J M, MECOZZI M G. Development of high nitrogen-low nickel-18%Cr austenitic stainless steels[J].Journal of Materials Science,2000,35(19):4803-4808.
|
[14] |
TARBOTON J N, MATTHEWS L M, SUTCLIFFE A. The hot workability of Cromanite, a high nitrogen austenitic stainless steel[J].Materials Science Forum,1999,318/320:777-784.
|
[15] |
CZERWINSKI F, CHO J Y. The edge-cracking of AISI 304 stainless steel during hot-rolling[J].Journal of Materials Science,1999,34(19):4727-4735.
|
[16] |
BEVIS H. Deformation substructure and recrystallization[J].Materials Science Forum,2007,558/559:13-22.
|
[17] |
MARTIN C M, ERIC R N, ELLIOT L B, et al. Hot working and recrystallization of as-cast 316L[J].Metallurgical and Materials Transactions: A,2003,34(8):1683-1703.
|
[18] |
侯国清,朱亮,马蓉. 奥氏体不锈钢 Cr15Mn9Cu2Ni1N 连铸坯壳层的热塑性[J].材料科学与工艺,2011,19(1):91-94.
|
[19] |
朱亮,张孝平, 侯国清.Cr15Mn9Cu2Ni1N奥氏体不锈钢的热变形本构特性[J].塑性工程学报,2009,16(5):96-100.
|
[1] | ZHANG Xinning, ZHANG Yingying. Microscopic Failure Mechanism of Graphite in Ferrite Ductile Iron[J]. Materials and Mechanical Engineering, 2021, 45(11): 24-28. DOI: 10.11973/jxgccl202111005 |
[2] | LI Wenyuan, LIU Kun, HUI Yajun, LIU Jie, ZHANG Xu, IU Xiaocui. Microstructure and Properties of Aluminum-Silicon Weathering Steel Prepared by Strain Induced Ferrite Transformation Rolling[J]. Materials and Mechanical Engineering, 2019, 43(9): 33-37,72. DOI: 10.11973/jxgccl201909007 |
[3] | CAI Xiao, SHI Qiaoying, XING Baihui, CHEN Xingyang, ZHOU Chengshuang, ZHANG Lin. Effect of δ-ferrite on Susceptibility to Hydrogen Embrittlement of 304 Austenitic Stainless Steel in High-Pressure Hydrogen[J]. Materials and Mechanical Engineering, 2019, 43(2): 7-12. DOI: 10.11973/jxgccl201902002 |
[4] | JI Bo, SHEN Yin-zhong, HUANG Xi. Serrated Flow of 11 Cr Ferritic/Martensitic Steel during High Temperature Tension[J]. Materials and Mechanical Engineering, 2014, 38(5): 33-36. |
[5] | LIU Zhi-xiang, LIU Jian-sheng, HE Wen-wu, ZHAO Xiao-dong. Elimination for δ Ferrite in X12CrMoWVNbN10-1-1 Steel[J]. Materials and Mechanical Engineering, 2013, 37(1): 32-35. |
[6] | ZHANG Dan, LIU Ya-zheng, ZHOU Le-yu, ZHANG Da-wei. Effect of Step-Cooling Process on Structures and Properties of Microalloy Ferrite-Bainite Dual-Phase Steels[J]. Materials and Mechanical Engineering, 2012, 36(11): 50-53. |
[7] | LIU Jun-liang, SHAN Ai-dang. Creep Characteristics and Oxidation Behavior of New-Styled Ferrite Heat Resistant Steel at 650 ℃[J]. Materials and Mechanical Engineering, 2012, 36(6): 52-55. |
[8] | TANG Ming-hua, LIU Zhi-yi, HU Shuang-kai, DENG Bin, LI Chun-yuan. Research Progress of Deformation Induced Ferrite Transformation at ZrC/Austenitic Interface[J]. Materials and Mechanical Engineering, 2009, 33(12): 1-4. |
[9] | WU Jian-hua. Effect of Strain Rate on Deformation Induced Ferrite Transformation of Q235 Steel[J]. Materials and Mechanical Engineering, 2009, 33(5): 12-13. |
[10] | CHEN Si-fu, YU Ai-bing. Influence of Silicon on Ferrite Hardness of Nodular Cast Iron for Crank Shaft[J]. Materials and Mechanical Engineering, 2006, 30(1): 20-22. |