• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
DANG Xiao-li, YANG Fu-liang, DING Xun, LIU Pan, DAI Zhun. Hot Compression Deformation Behavior of Al-1.04Mg-0.85Si-0.01Cu Aluminum Alloy[J]. Materials and Mechanical Engineering, 2012, 36(5): 84-88.
Citation: DANG Xiao-li, YANG Fu-liang, DING Xun, LIU Pan, DAI Zhun. Hot Compression Deformation Behavior of Al-1.04Mg-0.85Si-0.01Cu Aluminum Alloy[J]. Materials and Mechanical Engineering, 2012, 36(5): 84-88.

Hot Compression Deformation Behavior of Al-1.04Mg-0.85Si-0.01Cu Aluminum Alloy

More Information
  • Received Date: December 27, 2011
  • The hot compression test was performed on Al-1.04Mg-0.85Si-0.01Cu aluminum alloy by Gleeble-1500 thermal simulation tester, the thermal deformation behavior of the alloy in the temperature range of 300-500 ℃ and strain rate range of 0.001-1.0 s-1was studied, and the microstructure was analyzed by optical microscopy after deformation under different conditions. The results show that the hot deformation behavior of the alloy could be described by a constitutive equation in hyperbolic sine function. When the strain rate was less than 1.0 s-1 , the deformation activation energy of the alloy rose with the increase of temperature and strain rate, however, the deformation activation energy decreased when the strain rate was 1.0 s-1. The calculated value of hot deformation activation energy of the aluminum alloy was 193.029 kJ·mol-1, and it was less than the deformation activation energy of 6061 alloy. The tested alloy has excellent hot workability.
  • [1]
    袁东, 刘诗安, 张辉, 等.新型Al-Mg-Si-Cu合金热压缩流变应力研究[J].湖南科技大学学报: 自然科学版, 2005, 20(1): 25-27.
    [2]
    BERGSMA S C, KASSNER M E, LI X, et al. Strengthening in the new aluminum alloy AA6069[J].Mater Sci Eng A , 1998, 254: 112-118.
    [3]
    VAN DE LANGKRUIS J, KOOL WH, VAN DER ZWAAG S. Assessment of constitutive equations in modeling the hot deformability of some averaged Al-Mg-Si alloys with varying solute contents[J].Mater Sci Eng A Struct Mater, 1999, 266: 135-145.
    [4]
    SHI H, MCLAREN A J, SELLARS C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J].Mater Sci Technol 1997, 13: 210-214.
    [5]
    RYAN N D. Constitutive analysis in hot working[J].Mater Sci Eng A Struct Mater, 2002, 322: 43-63.
    [6]
    MCQUEEN H J, XIA X, CUI Y, et al. Solution and precipitation effects on hot workability of 6201 Alloy[J]. Mater Sci Eng A Struct Mater, 2001, 319/321: 420-424.
    [7]
    SPIGARELLI S, EVANGELISTA E, MCQUEEN H J. Study of hot workability of a heat treated AA6082 aluminum alloy[J].Scr Mater 2003, 49: 179-183.
    [8]
    郑子樵.材料科学基础[M].长沙: 中南大学出版社, 2005.
    [9]
    李文斌, 潘清林, 梁文杰, 等.含Sc超高强Al-Zn-Cu-Mg-Sc-Zr 合金的热压缩变形流变应力[J].中国有色金属学报, 2008, 18(5): 777-782.
    [10]
    沈健.热压缩2091 Al-Li合金的流变应力行为[J].稀有金属, 1998, 22(1): 47-50.
    [11]
    SHEPPARD T, PARSON N C, ZAIDI M A, et al. Dynamic recrystallization in Al-Mg[J].Met Sci, 1983, 17(10): 481-487.
    [12]
    王孟君, 甘春雷.6061 铝合金低温快速流变行为研究[J].金属热处理, 2003, 28(6): 16-18.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return