Page 134 - 机械工程材料2024年第十一期
P. 134
吴叶军,等:考虑侧壁热源的摇动电弧窄间隙GMA焊接温度场有限元模拟
左右两侧壁熔合线最高点的深度与试验结果间的差 的研究[J]. 机械工程学报,2016,52(18):31-37.
值明显小于未考虑侧壁热源时,考虑与不考虑侧壁 HUANG J K,SUN T L,FAN D,et al. Study on the
热源2种条件下,焊接接头不同测试点的热循环曲 surface flow behavior of TIG weld pool[J]. Journal of
线的变化趋势与试验结果基本吻合,峰值温度的最 Mechanical Engineering,2016,52(18):31-37.
[7] GAO X S,WU C S,GOECKE S F,et al. Numerical
大相对误差分别为1.8%和3.4%,可知考虑侧壁热
simulation of temperature field,fluid flow and weld
源的热源模型能更加准确地描述摇动电弧窄间隙
bead formation in oscillating single mode laser-GMA
GMA焊过程中的热源分布特征。 hybrid welding[J]. Journal of Materials Processing
(2) 考虑侧壁热源时模拟得到底部熔深略小于 Technology,2017,242:147-159.
未考虑侧壁热源时,而侧壁熔深则略大,但尺寸变化 [8] LI W H,YU R,HUANG D C,et al. Numerical
均小于0.1 mm;考虑侧壁热源主要影响两侧壁的熔 simulation of multi-layer rotating arc narrow gap
合线最高点的位置。温度场稳定前,考虑侧壁热源 MAG welding for medium steel plate[J]. Journal of
时熔池的形成规律与不考虑侧壁热源的基本一致, Manufacturing Processes,2019,45:460-471.
[9] ELMESALAMY A S,ABDOLVAND H,WALSH
但接头上表面的熔池尺寸略小于不考虑侧壁热源时;
J N,et al. Measurement and modelling of the residual
而温度场稳定后,是否考虑侧壁热源对焊接接头上
stresses in autogenous and narrow gap laser welded
表面的熔池尺寸影响不大。 AISI grade 316L stainless steel plates[J]. International
Journal of Pressure Vessels and Piping,2016,147:64-
参考文献:
78.
[1] 林三宝,蔡笑宇,季相儒. 厚板窄间隙焊接技术研究进 [10] 张华军,张广军,蔡春波,等. 摆动焊接动态过程温度
展[J]. 机械制造文摘(焊接分册),2017(5):33-38. 场数值模拟[J]. 焊接学报,2008,29(2):69-72.
LIN S B,CAI X Y,JI X R. Research status of narrow ZHANG H J,ZHANG G J,CAI C B,et al. Numerical
gap welding for thick plates[J]. Welding Digest of simulation on temperature field of dynamic welding
Machinery Manufacturing,2017(5):33-38. processing with weaving[J]. Transactions of the China
[2] 赵博. 窄间隙MAG焊电弧行为研究 [D]. 哈尔滨:哈 Welding Institution,2008,29(2):69-72.
尔滨工业大学,2009. [11] 胥国祥,潘海潮,王加友. 摇动电弧窄间隙GMAW焊
ZHAO B. Research on arc behaviors of narrow-gap 温度场数值分析模型[J]. 焊接学报,2017,38(10):55-
MAG[D]. Harbin:Harbin Institute of Technology, 60.
2009. XU G X,PAN H C,WANG J Y. Numerical analysis
[3] WANG J Y,ZHU J,FU P,et al. A swing arc system model of temperature field in swing-arc narrow gap
for narrow gap GMA welding[J]. ISIJ International, GMAW[J]. Transactions of the China Welding
2012,52(1):110-114. Institution,2017,38(10):55-60.
[4] XU G X,LI L,WANG J Y,et al. Study of weld [12] LIANG G D,QIN G L,CAO P Z,et al. Numerical
formation in swing arc narrow gap vertical GMA investigation of sidewall penetration in narrow gap
welding by numerical modeling and experiment[J]. The oscillating laser welding process[J]. Optics & Laser
International Journal of Advanced Manufacturing Technology,2024,170:110282.
Technology,2018,96(5):1905-1917. [13] 张李祥. 中厚板窄间隙摆动激光填丝焊工艺参数优化
[5] WANG J Y,JIANG Y Q,ZHU J,et al. Development 与数值分析[D]. 徐州:中国矿业大学,2023.
of swing arc narrow gap GMAW process assisted ZHANG L X. Optimization and numerical analysis of
by swaying wire[J]. Journal of Materials Processing process parameters for narrow gap swing laser wire-
Technology,2023,318:118004. filling welding of medium and heavy plate[D]. Xuzhou:
[6] 黄健康,孙天亮,樊丁,等. TIG焊熔池表面流动行为 China University of Mining and Technology,2023.
126

