Page 134 - 机械工程材料2024年第十一期
P. 134

吴叶军,等:考虑侧壁热源的摇动电弧窄间隙GMA焊接温度场有限元模拟


              左右两侧壁熔合线最高点的深度与试验结果间的差                                 的研究[J]. 机械工程学报,2016,52(18):31-37.
              值明显小于未考虑侧壁热源时,考虑与不考虑侧壁                                 HUANG J K,SUN T L,FAN D,et al. Study on the
              热源2种条件下,焊接接头不同测试点的热循环曲                                 surface  flow  behavior  of  TIG  weld  pool[J]. Journal  of
              线的变化趋势与试验结果基本吻合,峰值温度的最                                 Mechanical Engineering,2016,52(18):31-37.

                                                                  [7] GAO X S,WU C S,GOECKE S F,et al. Numerical
              大相对误差分别为1.8%和3.4%,可知考虑侧壁热
                                                                     simulation  of  temperature  field,fluid  flow  and  weld
              源的热源模型能更加准确地描述摇动电弧窄间隙
                                                                     bead  formation  in  oscillating  single  mode  laser-GMA
              GMA焊过程中的热源分布特征。                                        hybrid  welding[J]. Journal  of  Materials  Processing
                 (2) 考虑侧壁热源时模拟得到底部熔深略小于                              Technology,2017,242:147-159.
              未考虑侧壁热源时,而侧壁熔深则略大,但尺寸变化                             [8] LI  W  H,YU  R,HUANG  D  C,et  al.  Numerical

              均小于0.1 mm;考虑侧壁热源主要影响两侧壁的熔                              simulation  of  multi-layer  rotating  arc  narrow  gap
              合线最高点的位置。温度场稳定前,考虑侧壁热源                                 MAG  welding  for  medium  steel  plate[J]. Journal  of
              时熔池的形成规律与不考虑侧壁热源的基本一致,                                 Manufacturing Processes,2019,45:460-471.
                                                                  [9] ELMESALAMY  A  S,ABDOLVAND  H,WALSH

              但接头上表面的熔池尺寸略小于不考虑侧壁热源时;
                                                                     J  N,et  al.  Measurement  and  modelling  of  the  residual
              而温度场稳定后,是否考虑侧壁热源对焊接接头上
                                                                     stresses  in  autogenous  and  narrow  gap  laser  welded
              表面的熔池尺寸影响不大。                                           AISI grade 316L stainless steel plates[J]. International
                                                                     Journal of Pressure Vessels and Piping,2016,147:64-
              参考文献:
                                                                     78.
                [1] 林三宝,蔡笑宇,季相儒. 厚板窄间隙焊接技术研究进                     [10] 张华军,张广军,蔡春波,等. 摆动焊接动态过程温度


                   展[J]. 机械制造文摘(焊接分册),2017(5):33-38.                 场数值模拟[J]. 焊接学报,2008,29(2):69-72.
                   LIN S B,CAI X Y,JI X R. Research status of narrow       ZHANG H J,ZHANG G J,CAI C B,et al. Numerical
                   gap  welding  for  thick  plates[J]. Welding  Digest  of   simulation  on  temperature  field  of  dynamic  welding
                   Machinery Manufacturing,2017(5):33-38.            processing  with  weaving[J]. Transactions  of  the  China
                [2] 赵博. 窄间隙MAG焊电弧行为研究 [D]. 哈尔滨:哈                     Welding Institution,2008,29(2):69-72.


                   尔滨工业大学,2009.                                   [11] 胥国祥,潘海潮,王加友. 摇动电弧窄间隙GMAW焊
                   ZHAO  B.  Research  on  arc  behaviors  of  narrow-gap   温度场数值分析模型[J]. 焊接学报,2017,38(10):55-
                   MAG[D]. Harbin:Harbin  Institute  of  Technology,  60.
                   2009.                                             XU G X,PAN H C,WANG J Y. Numerical analysis

                [3] WANG J Y,ZHU J,FU P,et al. A swing arc system    model  of  temperature  field  in  swing-arc  narrow  gap
                   for  narrow  gap  GMA  welding[J]. ISIJ  International,  GMAW[J]. Transactions  of  the  China  Welding
                   2012,52(1):110-114.                               Institution,2017,38(10):55-60.


                [4] XU  G  X,LI  L,WANG  J  Y,et  al.  Study  of  weld     [12] LIANG  G  D,QIN  G  L,CAO  P  Z,et  al.  Numerical
                   formation  in  swing  arc  narrow  gap  vertical  GMA   investigation  of  sidewall  penetration  in  narrow  gap
                   welding by numerical modeling and experiment[J]. The   oscillating  laser  welding  process[J]. Optics  &  Laser
                   International  Journal  of  Advanced  Manufacturing   Technology,2024,170:110282.

                   Technology,2018,96(5):1905-1917.               [13] 张李祥. 中厚板窄间隙摆动激光填丝焊工艺参数优化
                [5] WANG J Y,JIANG Y Q,ZHU J,et al. Development      与数值分析[D]. 徐州:中国矿业大学,2023.

                   of  swing  arc  narrow  gap  GMAW  process  assisted       ZHANG  L  X.  Optimization  and  numerical  analysis  of
                   by  swaying  wire[J]. Journal  of  Materials  Processing   process  parameters  for  narrow  gap  swing  laser  wire-
                   Technology,2023,318:118004.                       filling welding of medium and heavy plate[D]. Xuzhou:
                [6] 黄健康,孙天亮,樊丁,等. TIG焊熔池表面流动行为                       China University of Mining and Technology,2023.












               126
   129   130   131   132   133   134   135   136   137   138   139