Page 141 - 机械工程材料2024年第十一期
P. 141
汲高飞,等:基于响应面法和BP神经网络的7050铝合金腐蚀疲劳寿命预测及对比
LUO L Z,ZHOU K,ZHOU J,et al. Effect of different herbal tea[J]. Processes,2022,10(1):125.
loading conditions on corrosion damage behavior of [12] 王小川. MATLAB神经网络43个案例分析 [M]. 北京:
7050 aluminum alloy under synergistic effect of marine 北京航空航天大学出版社,2013.
atmospheric environment and tensile fatigue load[J]. WANG X C. Analysis of 43 cases of MATLAB neural
Surface Technology,2023,52(11):291-299. network[M]. Beijing:Beihang University Press,2013.
[6] 吴护林,罗来正,刘春苗,等. 高强铝合金在海洋大气 [13] MISRA K C,PAUL M,BHATTACHARJYA S.
环境与拉伸疲劳载荷协同作用下的腐蚀损伤行为对比 Probabilistic fatigue life assessment of steel rail-bridge in
研究[J]. 表面技术,2023,52(10):220-228. dual response surface framework[J]. Structures,2023,
WU H L,LUO L Z,LIU C M,et al. Comparative study 53:677-692.
on corrosion damage behavior of high strength aluminum [14] 刘娜,刘鹏,高媛媛,等. 基于响应曲面优化的铝合金
alloys under synergistic effect of marine atmospheric 轮毂径向疲劳寿命预测[J]. 特种铸造及有色合金,
environment and tensile fatigue load[J]. Surface 2022,42(11):1345-1350.
Technology,2023,52(10):220-228. LIU N,LIU P,GAO Y Y,et al. Radial fatigue life
[7] 魏雨晨,李旭东,刘治国,等. 6A02铝合金预腐蚀疲劳 prediction of aluminum alloy wheels based on response
寿命预测的损伤模型研究[J]. 环境技术,2022,40(2): surface optimization[J]. Special Casting & Nonferrous
98-102. Alloys,2022,42(11):1345-1350.
WEI Y C,LI X D,LIU Z G,et al. Research on damage [15] 刘治国,穆志韬,金平. LY12CZ腐蚀疲劳寿命的神经
model of pre-corrosion fatigue life prediction of 6A02 网络研究[J]. 装备环境工程,2008,5(3):24-27.
aluminum alloy[J]. Environmental Technology,2022, LIU Z G,MU Z T,JIN P. Study of corrosion
40(2):98-102. fatigue life of LY12CZ based on artificial neural
[8] 王付胜,孔繁淇,王文平,等. 航空铝合金原位腐蚀疲 network[J]. Equipment Environmental Engineering,
劳性能及断裂机理[J]. 材料工程,2022,50(6):149- 2008,5(3):24-27.
156. [16] ZHONG X C,XIE R K,QIN S H,et al. A process-
WANG F S,KONG F Q,WANG W P,et al. In-situ data-driven BP neural network model for predicting
corrosion fatigue performance and fracture mechanism interval-valued fatigue life of metals[J]. Engineering
of aviation aluminum alloy[J]. Journal of Materials Fracture Mechanics,2022,276:108918.
Engineering,2022,50(6):149-156. [17] WANG Y J,ZHU Z Y,SHA A X,et al. Low cycle
[9] YUSUF M,FAROOQI A S,ALAM M A,et al. fatigue life prediction of titanium alloy using genetic
Response surface optimization of syngas production from algorithm-optimized BP artificial neural network[J].
greenhouse gases via DRM over high performance Ni‒W International Journal of Fatigue,2023,172:107609.
catalyst[J]. International Journal of Hydrogen Energy, [18] ALAM M A,YA H,AZEEM M,et al. Modelling
2022,47(72):31058-31071. and optimisation of hardness behaviour of sintered Al/
[10] WITEK-KROWIAK A,CHOJNACKA K, SiC composites using RSM and ANN:A comparative
PODSTAWCZYK D,et al. Application of response study[J]. Journal of Materials Research and
surface methodology and artificial neural network Technology,2020,9:14036-14050.
methods in modelling and optimization of biosorption [19] 沈花玉,王兆霞,高成耀,等. BP神经网络隐含层单元
process[J]. Bioresource Technology,2014,160:150- 数的确定[J]. 天津理工大学学报,2008,24(5):13-15.
160. SHEN H Y,WANG Z X,GAO C Y,et al. Determining
[11] RITTISAK S,CHAROEN R,CHOOSUK N,et al. the number of BP neural network hidden layer
Response surface optimization for antioxidant extraction units[J]. Journal of Tianjin University of Technology,
and attributes liking from roasted rice germ flavored 2008,24(5):13-15.
133

