Page 141 - 机械工程材料2024年第十一期
P. 141

汲高飞,等:基于响应面法和BP神经网络的7050铝合金腐蚀疲劳寿命预测及对比


                   LUO L Z,ZHOU K,ZHOU J,et al. Effect of different   herbal tea[J]. Processes,2022,10(1):125.

                   loading  conditions  on  corrosion  damage  behavior  of     [12] 王小川. MATLAB神经网络43个案例分析 [M]. 北京:
                   7050  aluminum  alloy  under  synergistic  effect  of  marine   北京航空航天大学出版社,2013.
                   atmospheric  environment  and  tensile  fatigue  load[J].       WANG X C. Analysis of 43 cases of MATLAB neural
                   Surface Technology,2023,52(11):291-299.           network[M]. Beijing:Beihang University Press,2013.
                [6] 吴护林,罗来正,刘春苗,等. 高强铝合金在海洋大气                     [13] MISRA  K  C,PAUL  M,BHATTACHARJYA  S.


                   环境与拉伸疲劳载荷协同作用下的腐蚀损伤行为对比                           Probabilistic fatigue life assessment of steel rail-bridge in
                   研究[J]. 表面技术,2023,52(10):220-228.                  dual  response  surface  framework[J]. Structures,2023,
                   WU H L,LUO L Z,LIU C M,et al. Comparative study   53:677-692.
                   on corrosion damage behavior of high strength aluminum     [14] 刘娜,刘鹏,高媛媛,等. 基于响应曲面优化的铝合金

                   alloys  under  synergistic  effect  of  marine  atmospheric   轮毂径向疲劳寿命预测[J]. 特种铸造及有色合金,
                   environment  and  tensile  fatigue  load[J]. Surface   2022,42(11):1345-1350.
                   Technology,2023,52(10):220-228.                   LIU  N,LIU  P,GAO  Y  Y,et  al.  Radial  fatigue  life
                [7] 魏雨晨,李旭东,刘治国,等. 6A02铝合金预腐蚀疲劳                      prediction  of  aluminum  alloy  wheels  based  on  response

                   寿命预测的损伤模型研究[J]. 环境技术,2022,40(2):                  surface  optimization[J]. Special  Casting  &  Nonferrous
                   98-102.                                           Alloys,2022,42(11):1345-1350.
                   WEI Y C,LI X D,LIU Z G,et al. Research on damage     [15] 刘治国,穆志韬,金平. LY12CZ腐蚀疲劳寿命的神经

                   model  of  pre-corrosion  fatigue  life  prediction  of  6A02   网络研究[J]. 装备环境工程,2008,5(3):24-27.
                   aluminum  alloy[J]. Environmental  Technology,2022,      LIU  Z  G,MU  Z  T,JIN  P.  Study  of  corrosion
                   40(2):98-102.                                     fatigue  life  of  LY12CZ  based  on  artificial  neural
                [8] 王付胜,孔繁淇,王文平,等. 航空铝合金原位腐蚀疲                        network[J]. Equipment  Environmental  Engineering,

                   劳性能及断裂机理[J]. 材料工程,2022,50(6):149-                 2008,5(3):24-27.

                   156.                                           [16] ZHONG X C,XIE R K,QIN S H,et al. A process-
                   WANG F S,KONG F Q,WANG W P,et al. In-situ         data-driven  BP  neural  network  model  for  predicting
                   corrosion  fatigue  performance  and  fracture  mechanism   interval-valued  fatigue  life  of  metals[J]. Engineering
                   of  aviation  aluminum  alloy[J]. Journal  of  Materials   Fracture Mechanics,2022,276:108918.

                   Engineering,2022,50(6):149-156.                [17] WANG  Y  J,ZHU  Z  Y,SHA  A  X,et  al.  Low  cycle
                [9] YUSUF  M,FAROOQI  A  S,ALAM  M  A,et  al.        fatigue  life  prediction  of  titanium  alloy  using  genetic

                   Response surface optimization of syngas production from   algorithm-optimized  BP  artificial  neural  network[J].
                   greenhouse gases via DRM over high performance Ni‒W   International Journal of Fatigue,2023,172:107609.
                   catalyst[J]. International  Journal  of  Hydrogen  Energy,    [18] ALAM  M  A,YA  H,AZEEM  M,et  al.  Modelling

                   2022,47(72):31058-31071.                          and  optimisation  of  hardness  behaviour  of  sintered  Al/
                [10] WITEK-KROWIAK  A,CHOJNACKA  K,                  SiC  composites  using  RSM  and  ANN:A  comparative

                   PODSTAWCZYK  D,et  al.  Application  of  response   study[J]. Journal  of  Materials  Research  and
                   surface  methodology  and  artificial  neural  network   Technology,2020,9:14036-14050.
                   methods  in  modelling  and  optimization  of  biosorption     [19] 沈花玉,王兆霞,高成耀,等. BP神经网络隐含层单元

                   process[J]. Bioresource  Technology,2014,160:150-  数的确定[J]. 天津理工大学学报,2008,24(5):13-15.
                   160.                                              SHEN H Y,WANG Z X,GAO C Y,et al. Determining
                [11] RITTISAK  S,CHAROEN  R,CHOOSUK  N,et  al.       the  number  of  BP  neural  network  hidden  layer

                   Response surface optimization for antioxidant extraction   units[J]. Journal  of  Tianjin  University  of  Technology,
                   and  attributes  liking  from  roasted  rice  germ  flavored   2008,24(5):13-15.














                                                                                                          133
   136   137   138   139   140   141   142   143   144