Page 134 - 机械工程材料2025年第三期
P. 134

薛 河,等:基于压入响应的异种金属焊接接头材料力学性能计算方法


              5 结 论                                                  a  punch  of  arbitrary  profile[J]. International  Journal  of
                                                                     Engineering Science,1965,3(1):47-57.
                 (1)在 200~600 MPa屈服应力和 0.1~0.5 应变                 [8] TABOR  D.  The  hardness  of  metals[M]. Oxford:

              硬化指数范围内,利用通过压入加载响应参数反求                                 Clarendon Press,1951.
              材料力学性能参数的预测公式计算得到的屈服应                               [9] OLIVER  W  C,PHARR  G  M.  An  improved

              力和应变硬化指数的最大相对误差绝对值分别为                                  technique  for  determining  hardness  and  elastic  modulus
              10.5%,6.29%。所建立的公式可以较为准确地预测                            using  load  and  displacement  sensing  indentation
              异种金属焊接接头局部区域的材料力学性能参数。                                 experiments[J]. Journal of Materials Research,1992,7
                                                                    (6):1564-1583.
                 (2) 利用预测公式计算得到SA508钢/52M合金
                                                                  [10] JOHNSON  K  L.  Contact  mechanics[M]. Cambridge:

              堆焊层/52M合金对接焊缝/316L钢异种金属焊接
                                                                     Cambridge University Press,1985.
              接头两侧热影响区的屈服应力和应变硬化指数变化

                                                                  [11] JOHNSON  K  L.  The  correlation  of  indentation
              明显,随着距熔合线距离的增加,屈服应力减小,而                                experiments[J]. Journal of the Mechanics and Physics of
              应变硬化指数增大;母材、52M镍基合金堆焊层和对                               Solids,1970,18(2):115-126.
              接焊缝的屈服应力和应变硬化指数分布相对稳定。                              [12] ZHANG  T  H,CHENG  W  Q,PENG  G  J,et  al.

                                                                     Numerical  investigation  of  spherical  indentation  on
              参考文献:
                                                                     elastic-power-law  strain-hardening  solids  with  non-
                                                                     equibiaxial residual stresses[J]. MRS Communications,

                [1] YE  D  Y,MI  F,LIU  J  Z,et  al.  Use  of  instrumented
                   indentation  testing  to  study  local  mechanical  properties   2019,9(1):360-369.

                   of 304L SS welded joints subjected to low-cycle fatigue     [13] JIANG  P,ZHANG  T  H,FENG  Y  H,et  al.
                   loadings[J]. Materials  Science  and  Engineering:A,  Determination  of  plastic  properties  by  instrumented
                   2013,564:76-84.                                   spherical  indentation:Expanding  cavity  model  and

                [2] XUE  H,WANG  Z,WANG  S,et  al.  Characterization   similarity  solution  approach[J]. Journal  of  Materials
                   of  mechanical  heterogeneity  in  dissimilar  metal  welded   Research,2009,24(3):1045-1053.
                                                                  [14] 张志杰,蔡力勋,陈辉,等. 金属材料的强度与应力-应

                   joints[J]. Materials,2021,14(15):4145.
                                                                     变关系的球压入测试方法[J]. 力学学报,2019,51(1):

                [3] DONG  W  C,GAO  D  B,LU  S  P.  Numerical
                   investigation on residual stresses of the safe-end/nozzle   159-169.
                   dissimilar metal welded joint in CAP1400 nuclear power       ZHANG  Z  J,CAI  L  X,CHEN  H,et  al.  Spherical
                   plants[J]. Acta Metallurgica Sinica,2019,32(5):618-  indentation  method  to  determine  stress-strain  relations
                   628.                                              and  tensile  strength  of  metallic  materials[J]. Chinese

                [4] ZOU B,GUAN K S,WU S B. Determination of area     Journal of Theoretical and Applied Mechanics,2019,51
                   reduction  rate  by  continuous  ball  indentation  test[J].   (1):159-169.
                   International  Journal  of  Pressure  Vessels  and  Piping,    [15] 陈辉,蔡力勋,彭晖. 预测铝合金单轴力学性能的复合

                                                                     型双锥压入法[J]. 机械工程学报,2021,57(20):79-
                   2016,139:220-227.
                [5] 张泰华. 微/纳米力学测试技术:仪器化压入的测量、                        88.

                   分析、应用及其标准化[M]. 北京:科学出版社,2013.                     CHEN H,CAI L X,PENG H. Composite dual-conical
                   ZHANG T H. Micro/nano mechanics testing technology:  indentation method for predicting the uniaxial mechanical
                   Instrumental  indentation  measurement,analysis,  properties of aluminum alloys[J]. Journal of Mechanical
                   application  and  standardization[M]. Beijing:Science   Engineering,2021,57(20):79-88.

                   Press,2013.                                    [16] 范凯. 核电异种金属焊接接头材料界面区的局部断裂
                [6] 黄礼洋,关凯书. 球压痕试验法评价金属材料的强                          行为研究[D]. 上海:华东理工大学,2018.

                   度[J]. 机械工程材料,2021,45(1):85-91.                    FAN  K.  Study  on  local  fracture  behavior  of  materials
                   HUANG  L  Y,GUAN  K  S.  Strength  evaluation     interface  regions  in  dissimilar  metal  welded  joints
                   of  metal  materials  by  spherical  indentation  test   in  nuclear  power  plant[D]. Shanghai:East  China
                   method[J]. Materials  for  Mechanical  Engineering,  University of Science and Technology,2018.
                   2021,45(1):85-91.                              [17] DE  BEULE  M,MORTIER  P,BELIS  J,et  al.


                [7] SNEDDON  I  N.  The  relation  between  load  and   Plasticity  as  a  lifesaver  in  the  design  of  cardiovascular
                   penetration in the axisymmetric boussinesq problem for   stents[J]. Key  Engineering  Materials,2007,340/341:
               126
   129   130   131   132   133   134   135   136   137   138   139