Page 52 - 机械工程材料2025年第三期
P. 52
徐晓龙,等:道间温度与焊后热处理冷却速率对P91钢焊缝金属冲击韧性与耐腐蚀性能的影响
图 4 300 ℃ 道间温度和约 20 ℃·h − 1 焊后热处理冷却速率下不同冲击吸收能量的焊缝金属断口宏观形貌与裂纹源微观形貌
Fig. 4 Fracture macromorphology (a‒c) and crack initiation source micromorphology (d‒f) of weld metal with different impact absorbed
energies at interpass temperatures of 300 °C and post-weld heat treatment cooling rate of about 20 °C·h −1
图 5 55 ℃·h − 1 焊后热处理冷却速率下不同冲击吸收能量的焊缝金属裂纹源附近的微观形貌 ( 道间温度 250 ℃)
Fig. 5 Micromorphology near crack initiation source of weld metal with different impact absorbed energies at post-weld heat treatment cooling
rate of 55 °C·h −1 (interpass temperature of 250 °C) : (a, c) at low magnification and (b, d) at high magnification
图 6 约 20 ℃·h − 1 焊后热处理冷却速率下不同冲击吸收能量的焊缝金属裂纹源附近的微观形貌 ( 道间温度 250 ℃)
Fig. 6 Micromorphology near crack initiation source of weld metal with different impact absorbed energies at post-weld heat treatment cooling
rate of about 20 °C·h −1 (interpass temperature of 250 °C): (a, c) at low magnification and (b, d) at high magnification
45 J冲击吸收能量的焊缝金属组织中观察到大量碳 后热处理冷却速率下相比,碳化物数量明显增加;
化物,且晶界处的碳化物发生聚集,与55 ℃ · h −1 焊 105 J冲击吸收能量的焊缝金属组织中碳化物较少,
44

