• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LI Weimin, HU Querui, YANG Ying. Properties of BiScO3-xPbTiO3-yPb(Yb1/2Nb1/2)O3 Piezoelectric Ceramics[J]. Materials and Mechanical Engineering, 2017, 41(5): 79-83,88. DOI: 10.11973/jxgccl201705016
Citation: LI Weimin, HU Querui, YANG Ying. Properties of BiScO3-xPbTiO3-yPb(Yb1/2Nb1/2)O3 Piezoelectric Ceramics[J]. Materials and Mechanical Engineering, 2017, 41(5): 79-83,88. DOI: 10.11973/jxgccl201705016

Properties of BiScO3-xPbTiO3-yPb(Yb1/2Nb1/2)O3 Piezoelectric Ceramics

More Information
  • Received Date: August 30, 2016
  • Revised Date: April 04, 2017
  • BiScO3-xPbTiO3-yPb(Yb1/2Nb1/2)O3 (BS-xPT-yPYN,y=0.10,0.15,0.20, 0.30) piezoelectric ceramics were prepared by the precursor method. The effects of PYN molar fraction y on the microstructure, phase composition, phase structure, ferroelectric and piezoelectric properties of BS-xPT-yPYN ceramics were investigated. The results indicate that when y increased, the grain size of piezoelectric ceramics increased, the transformation from rhombohedral phase to tetragonal phase took place and the piezoelectric properties declined. When the molar fraction of PYN was 0.10, the higher coercive electric field Ec, the more obvious increase residual polarization Pr of piezoelectric ceramics had.
  • [1]
    刘治国.材料科学导论[M].北京:化学工业出版社, 2004:22-28.
    [2]
    TURNER R C, FUIERER P A, NEWNHAM R E, et al. Materials for high temperature acoustic and vibration sensor:A review[J]. Applied Acoustics, 1994, 41(4):299-324.
    [3]
    尹奇异,袁硕果,陈才,等. 0.95K0.47Na0.47Li0.06NbO3-0.05BaxSr1-xTiO3无铅压电陶瓷的微观结构与性能[J]. 机械工程材料,2009,33(10):43-45.
    [4]
    SETTER N, CROSS L E. The contribution of structural disorder to diffuse phase transitions in ferroelectrics[J]. Journal of Materials Science, 1980, 15(10):2478-2482.
    [5]
    YAO Z, LIU H, HAO H, et al. Structure, electrical properties, and depoling mechanism of BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 high-temperature piezoelectric ceramics[J]. Journal of Applied Physics, 2011, 109(1):14-15.
    [6]
    YOON K H, LEE Y S, HONG R L. Effect of Pb(Yb1/2Nb1/2)O3 on structural and piezoelectric properties of Pb(Zr0.52Ti0.48)O3 ceramics[J]. Journal of Applied Physics, 2000, 88(6):3596-3600.
    [7]
    竺保成,李玉平,高朋召,等. 烧结方法对锆钛酸铅压电陶瓷显微结构和电性能的影响[J]. 机械工程材料,2011,35(11):36-39.
    [8]
    CIHANGIR D, SUSAN T, MESSING G L. Processing and electrical properties of 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 ceramics[J]. Journal of Electroceramics, 2003, 10(1):47-55.
    [9]
    SWART S L, SHROUT T R. Fabrication of perovskite lead magnesium[J].Material Research Bulletin, 1982,17:1245-1250.
    [10]
    DURAN C, TROLIER-MCKINSTRY S, MESSING G L. Processing and electrical properties of 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 ceramics[J].Journal of Electroceramics, 2003, 10:47-55.
    [11]
    COCHARD C, KAROLAK F, BOGICEVIC C, et al. Original Reaction Sequence of Pb(Yb1/2Nb1/2)O3-PbTiO3:Consequences on dielectric properties and chemical order[J].Advances in Materials Science and Engineering,2015,1:1-6.
  • Related Articles

    [1]ZHOU Xinyu, HU Zhihua, LUAN Daocheng, WANG Zhengyun, LIN Shaobin. Effect of Welding Heat Input on Microstructure and Properties of 0Cr13Ni4Mo Martensitic Stainless Steel Arc Welded Joint[J]. Materials and Mechanical Engineering, 2024, 48(9): 38-43. DOI: 10.11973/jxgccl230261
    [2]DONG Weiwei, LIN Jian, XU Hailiang, FU Hanguang, LEI Yongping, WANG Xibo. Pulsed Laser Welding Process of SUS304 Stainless Steel Sheet and Microstructure and Mechanical Properties of Joint[J]. Materials and Mechanical Engineering, 2019, 43(5): 38-42,48. DOI: 10.11973/jxgccl201905008
    [3]LI Anmin, XU Fei, GUO Baohang, KONG Deming, WANG Fuwei. Microstructure and Mechanical Properties of AlNiFeCuCoCrVx High-Entropy Alloy[J]. Materials and Mechanical Engineering, 2019, 43(4): 48-52. DOI: 10.11973/jxgccl201904011
    [4]LIANG Jingwei, QIU Xiaoming, HU Qingwei, LIU Wensheng, LIU Yongcheng. Microstructure and Mechanical Properties of Laser Welded Dissimilar Joint of DP780/HC660 Dual-phase Steels with Different Thicknesses[J]. Materials and Mechanical Engineering, 2018, 42(1): 54-58,63. DOI: 10.11973/jxgccl201801011
    [5]ZHANG Yuqing, WEI Jinshan, MA Chengyong, AN Tongbang, XU Yusong. Microstructure and Mechanical Properties of 10Ni5CrMoV Steel MAG Welded Joint[J]. Materials and Mechanical Engineering, 2017, 41(8): 75-79. DOI: 10.11973/jxgccl201708017
    [6]YANG Zhi-hua, YANG Shang-lei, TUO Wen-hai, JIANG Yi-shuai, WANG Yan, ZHANG Dong-mei. Effects of Welding Speed on Microstructure and Mechanical Properties of Laser Welded Joint of TRIP590 High Strength Steel[J]. Materials and Mechanical Engineering, 2017, 41(4): 94-97,102. DOI: 10.11973/jxgccl201704020
    [7]ZHANG Min, XU Ai-yan, WANG Qiang, LI Ji-hong. Microstructure and Mechanical Properties of 12Cr1MoV Steel Welded Joint after High Temperature Service[J]. Materials and Mechanical Engineering, 2016, 40(2): 98-101. DOI: 10.11973/jxgccl201602023
    [8]ZHOU Cui, WANG Bin, ZHU Jia-xiang, SHEN Kun. Microstructure and Mechanical Properties of X70 Pipeline Steel with High Deformability[J]. Materials and Mechanical Engineering, 2014, 38(10): 32-36.
    [9]XU Feng. Microstructure and Mechanical Properties of Capacitor Spot Welding Joint of Stainless Steel Sheet[J]. Materials and Mechanical Engineering, 2010, 34(6): 64-66.
    [10]MA Qi-hui, WANG Shao-gang, LI Yan, ZHANG Liang. Microstructure and Properties of Welding Joint between SAF2205 Duplex Stainless Steel and 16MnR Steel[J]. Materials and Mechanical Engineering, 2010, 34(6): 17-20.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return