• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
SUN Ning, JIANG Yong, CHEN Jinyan, PENG Yawei, GONG Jianming. Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel[J]. Materials and Mechanical Engineering, 2019, 43(3): 7-12,66. DOI: 10.11973/jxgccl201903002
Citation: SUN Ning, JIANG Yong, CHEN Jinyan, PENG Yawei, GONG Jianming. Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel[J]. Materials and Mechanical Engineering, 2019, 43(3): 7-12,66. DOI: 10.11973/jxgccl201903002

Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel

More Information
  • Received Date: January 30, 2018
  • Revised Date: January 14, 2019
  • 316L austenitic stainless steel was surface enhanced by low temperature gaseous carburization, and then aged at 300-400 ℃ for 150, 1 500, 3 000 h, respectively. The effects of aging temperature and time on phase composition, thickness, nano-hardness and residual stress of the carburized surface layer were investigated. The thermal stability was analyzed. The results show that no new carbides precipitated in the carburized layer during aging at 300-400 ℃. When aged at 400 ℃, carbon atoms diffused into the substrate, leading to an obvious thickness increase of the carburized layer. The interface between the carburized layer and the substrate disappeared, and the surface nano-hardness decreased to 50% that of substrate after aging at 400 ℃ for 3 000 h. When aged at 300 ℃, the thickness, carbon content and nano-hardness of the carburized layer changed little; the carburized layer was relatively stable during working at 300 ℃. After aging at 300-400 ℃, the surface residual compressive stress of the carburized layer decreased, and the decreasing amplitude was larger at a higher aging temperature or for a longer aging time.
  • [1]
    SOUZA R M, IGNAT M, PINEDO C E, et al. Structure and properties of low temperature plasma carburized austenitic stainless steels[J]. Surface and Coatings Technology, 2009, 204(6/7):1102-1105.
    [2]
    梁磊, 赵阳, 刘世宏, 等. 凝汽器材料的耐磨蚀性能及电化学性能[J]. 腐蚀与防护, 2015, 36(8):717-720.
    [3]
    姜海一, 张雅琴, 贾国栋, 等. 奥氏体不锈钢制容器失效典型案例分析[C]//2006年全国失效分析与安全生产高级研讨会论文集. 北京:中国机械工程学会, 2006.
    [4]
    韩栋, 刘道新, 刘树涛. 汽轮机低压转子2Cr13不锈钢叶片断裂分析[J]. 机械工程材料, 2007, 31(7):45-48.
    [5]
    陈星, 姜涛, 陶春虎,等. 液压泵柱塞弹簧断裂失效分析[J]. 机械工程材料, 2009, 33(11):86-89.
    [6]
    KOLSTER B H. Development of a stainless and wear-resistant steel[J]. Materialen, 1987, 8:1-12.
    [7]
    ERNST F, CAO Y, MICHAL G M. Carbides in low-temperature-carburized stainless steels[J]. Acta Materialia, 2004, 52(6):1469-1477.
    [8]
    LIU W J, BRIMACOMBE J K, HAWBOLT E B. Influence of composition on the diffusivity of carbon in steels:I. Non-alloyed austenite[J]. Acta Metallurgica et Materialia, 1991, 39(10):2373-2380.
    [9]
    CAO Y, ERNST F, MICHAL G M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia, 2003, 51(14):4171-4181.
    [10]
    SATOMI N, KANAYAMA N, WATANABE Y, et al. Effects of heat treatment conditions on formation of expanded-austenite phase in austenitic stainless steels by combining active screen and DC plasma carburizing processes[J]. Materials Transactions, 2017, 58(8):1181-1189.
    [11]
    CHRISTIANSEN T L, STÅHL K, BRINK B K, et al. On the carbon solubility in expanded austenite and formation of Hägg carbide in AISI 316 stainless steel[J]. Steel Research International, 2016, 87(11):1395-1405.
    [12]
    ICHⅡ K, FUJIMURA K, TAKASE T. Structure of the ion-nitrided layer of 18-8 stainless steel[J]. Technology Reports of Kansai University, 1986, 27:135-144.
    [13]
    LEWIS D B, LEYLAND A, STEVENSON P R, et al. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels[J]. Surface and Coatings Technology, 1993, 60(1/2/3):416-423.
    [14]
    O'DONNELL L J, MICHAL G M, ERNST F, et al. Wear maps for low temperature carburised 316L austenitic stainless steel sliding against alumina[J]. Surface Engineering, 2010, 26(4):284-292.
    [15]
    CESCHINI L, CHIAVARI C, LANZONI E, et al. Low-temperature carburised AISI 316L austenitic stainless steel:Wear and corrosion behaviour[J]. Materials & Design, 2012, 38:154-160.
    [16]
    SUN Y, CHIN L Y. Residual stress evolution and relaxation in carbon S phase layers on AISI 316 austenitic stainless steel[J]. Surface Engineering, 2002, 18(6):443-446.
    [17]
    MICHAL G M, ERNST F, KAHN H, et al. Carbon supersaturation due to paraequilibrium carburization:Stainless steels with greatly improved mechanical properties[J]. Acta Materialia, 2006, 54(6):1597-1606.
    [18]
    AGARWAL N, KAHN H, AVISHAI A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization[J]. Acta Materialia, 2007, 55(16):5572-5580.
    [19]
    SUN Y. Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions[J]. Corrosion Science, 2010, 52(8):2661-2670.
    [20]
    TSUJIKAWA M, YOSHIDA D, YAMAUCHI N, et al. Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding[J]. Surface and Coatings Technology, 2005, 200(1):507-511.
    [21]
    MARTIN F J, LEMIEUX E, NEWBAUER T, et al. Localized corrosion resistance of LTCSS-carburized materials to seawater immersion[J]. ECS Transactions, 2007, 3(31):613-621.
    [22]
    BUHAGIAR J, SPITERI A, SACCO M, et al. Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising[J]. Corrosion Science, 2012, 59:169-178.
    [23]
    MARTINAVI ACČG IUS A, ABRASONIS G, SCHEINOST A C, et al. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J]. Acta Materialia, 2012, 60(10):4065-4076.
    [24]
    LI X Y, THAIWATTHANA S, DONG H, et al. Thermal stability of carbon S phase in 316 stainless steel[J]. Surface Engineering, 2002, 18(6):448-451.
    [25]
    ROTUNDO F, CESCHINI L, MARTINI C, et al. High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316L austenitic stainless steel[J]. Surface and Coatings Technology, 2014, 258:772-781.
    [26]
    WANG J, LI Z, WANG D, et al. Thermal stability of low-temperature carburized austenitic stainless steel[J]. Acta Materialia, 2017, 128:235-240.
    [27]
    姜勇, 孙宁, 李洋, 等. 316L奥氏体不锈钢低温超饱和气体渗碳层热稳定性研究[J]. 热加工工艺, 已接收.
    [28]
    荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015, 51(12):1516-1522.
    [29]
    CHRISTIANSEN T, SOMERS M A J. Characterisation of low temperature surface hardened stainless steel[J]. Struers Journal of Materialography, 2006, 9(9):2-17.
    [30]
    ERNST F, CAO Y, MICHAL G M, et al. Carbide precipitation in austenitic stainless steel carburized at low temperature[J]. Acta Materialia, 2007, 55(6):1895-1906.
    [31]
    姜勇.奥氏体不锈钢低温气体渗碳表面强化性能及在新能源中应用的研究[D].南京:南京工业大学,2017.
    [32]
    THAIWATTHANA S, LI X Y, DONG H, et al. Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J]. Surface Engineering, 2002, 18(6):433-437.
    [33]
    彭亚伟, 巩建鸣, 荣冬松,等. 316L奥氏体不锈钢低温表面渗碳的数值分析[J]. 金属学报, 2015, 51(12):1500-1506.[34] BUCHHAGEN P, BELL T. Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels[J]. Computational Materials Science, 1996, 7(1/2):228-234.

Catalog

    Article views (55) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return