Citation: | SUN Ning, JIANG Yong, CHEN Jinyan, PENG Yawei, GONG Jianming. Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel[J]. Materials and Mechanical Engineering, 2019, 43(3): 7-12,66. DOI: 10.11973/jxgccl201903002 |
[1] |
SOUZA R M, IGNAT M, PINEDO C E, et al. Structure and properties of low temperature plasma carburized austenitic stainless steels[J]. Surface and Coatings Technology, 2009, 204(6/7):1102-1105.
|
[2] |
梁磊, 赵阳, 刘世宏, 等. 凝汽器材料的耐磨蚀性能及电化学性能[J]. 腐蚀与防护, 2015, 36(8):717-720.
|
[3] |
姜海一, 张雅琴, 贾国栋, 等. 奥氏体不锈钢制容器失效典型案例分析[C]//2006年全国失效分析与安全生产高级研讨会论文集. 北京:中国机械工程学会, 2006.
|
[4] |
韩栋, 刘道新, 刘树涛. 汽轮机低压转子2Cr13不锈钢叶片断裂分析[J]. 机械工程材料, 2007, 31(7):45-48.
|
[5] |
陈星, 姜涛, 陶春虎,等. 液压泵柱塞弹簧断裂失效分析[J]. 机械工程材料, 2009, 33(11):86-89.
|
[6] |
KOLSTER B H. Development of a stainless and wear-resistant steel[J]. Materialen, 1987, 8:1-12.
|
[7] |
ERNST F, CAO Y, MICHAL G M. Carbides in low-temperature-carburized stainless steels[J]. Acta Materialia, 2004, 52(6):1469-1477.
|
[8] |
LIU W J, BRIMACOMBE J K, HAWBOLT E B. Influence of composition on the diffusivity of carbon in steels:I. Non-alloyed austenite[J]. Acta Metallurgica et Materialia, 1991, 39(10):2373-2380.
|
[9] |
CAO Y, ERNST F, MICHAL G M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia, 2003, 51(14):4171-4181.
|
[10] |
SATOMI N, KANAYAMA N, WATANABE Y, et al. Effects of heat treatment conditions on formation of expanded-austenite phase in austenitic stainless steels by combining active screen and DC plasma carburizing processes[J]. Materials Transactions, 2017, 58(8):1181-1189.
|
[11] |
CHRISTIANSEN T L, STÅHL K, BRINK B K, et al. On the carbon solubility in expanded austenite and formation of Hägg carbide in AISI 316 stainless steel[J]. Steel Research International, 2016, 87(11):1395-1405.
|
[12] |
ICHⅡ K, FUJIMURA K, TAKASE T. Structure of the ion-nitrided layer of 18-8 stainless steel[J]. Technology Reports of Kansai University, 1986, 27:135-144.
|
[13] |
LEWIS D B, LEYLAND A, STEVENSON P R, et al. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels[J]. Surface and Coatings Technology, 1993, 60(1/2/3):416-423.
|
[14] |
O'DONNELL L J, MICHAL G M, ERNST F, et al. Wear maps for low temperature carburised 316L austenitic stainless steel sliding against alumina[J]. Surface Engineering, 2010, 26(4):284-292.
|
[15] |
CESCHINI L, CHIAVARI C, LANZONI E, et al. Low-temperature carburised AISI 316L austenitic stainless steel:Wear and corrosion behaviour[J]. Materials & Design, 2012, 38:154-160.
|
[16] |
SUN Y, CHIN L Y. Residual stress evolution and relaxation in carbon S phase layers on AISI 316 austenitic stainless steel[J]. Surface Engineering, 2002, 18(6):443-446.
|
[17] |
MICHAL G M, ERNST F, KAHN H, et al. Carbon supersaturation due to paraequilibrium carburization:Stainless steels with greatly improved mechanical properties[J]. Acta Materialia, 2006, 54(6):1597-1606.
|
[18] |
AGARWAL N, KAHN H, AVISHAI A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization[J]. Acta Materialia, 2007, 55(16):5572-5580.
|
[19] |
SUN Y. Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions[J]. Corrosion Science, 2010, 52(8):2661-2670.
|
[20] |
TSUJIKAWA M, YOSHIDA D, YAMAUCHI N, et al. Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding[J]. Surface and Coatings Technology, 2005, 200(1):507-511.
|
[21] |
MARTIN F J, LEMIEUX E, NEWBAUER T, et al. Localized corrosion resistance of LTCSS-carburized materials to seawater immersion[J]. ECS Transactions, 2007, 3(31):613-621.
|
[22] |
BUHAGIAR J, SPITERI A, SACCO M, et al. Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising[J]. Corrosion Science, 2012, 59:169-178.
|
[23] |
MARTINAVI ACČG IUS A, ABRASONIS G, SCHEINOST A C, et al. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J]. Acta Materialia, 2012, 60(10):4065-4076.
|
[24] |
LI X Y, THAIWATTHANA S, DONG H, et al. Thermal stability of carbon S phase in 316 stainless steel[J]. Surface Engineering, 2002, 18(6):448-451.
|
[25] |
ROTUNDO F, CESCHINI L, MARTINI C, et al. High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316L austenitic stainless steel[J]. Surface and Coatings Technology, 2014, 258:772-781.
|
[26] |
WANG J, LI Z, WANG D, et al. Thermal stability of low-temperature carburized austenitic stainless steel[J]. Acta Materialia, 2017, 128:235-240.
|
[27] |
姜勇, 孙宁, 李洋, 等. 316L奥氏体不锈钢低温超饱和气体渗碳层热稳定性研究[J]. 热加工工艺, 已接收.
|
[28] |
荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015, 51(12):1516-1522.
|
[29] |
CHRISTIANSEN T, SOMERS M A J. Characterisation of low temperature surface hardened stainless steel[J]. Struers Journal of Materialography, 2006, 9(9):2-17.
|
[30] |
ERNST F, CAO Y, MICHAL G M, et al. Carbide precipitation in austenitic stainless steel carburized at low temperature[J]. Acta Materialia, 2007, 55(6):1895-1906.
|
[31] |
姜勇.奥氏体不锈钢低温气体渗碳表面强化性能及在新能源中应用的研究[D].南京:南京工业大学,2017.
|
[32] |
THAIWATTHANA S, LI X Y, DONG H, et al. Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J]. Surface Engineering, 2002, 18(6):433-437.
|
[33] |
彭亚伟, 巩建鸣, 荣冬松,等. 316L奥氏体不锈钢低温表面渗碳的数值分析[J]. 金属学报, 2015, 51(12):1500-1506.[34] BUCHHAGEN P, BELL T. Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels[J]. Computational Materials Science, 1996, 7(1/2):228-234.
|