• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHOU Shuang, TAN Jianping, LIU Changjun, ZHANG Haoyu, CHEN Jin. Strain Criterion of Reheat Cracking in 2.25Cr1Mo0.25V Steel[J]. Materials and Mechanical Engineering, 2019, 43(6): 12-17. DOI: 10.11973/jxgccl201906003
Citation: ZHOU Shuang, TAN Jianping, LIU Changjun, ZHANG Haoyu, CHEN Jin. Strain Criterion of Reheat Cracking in 2.25Cr1Mo0.25V Steel[J]. Materials and Mechanical Engineering, 2019, 43(6): 12-17. DOI: 10.11973/jxgccl201906003

Strain Criterion of Reheat Cracking in 2.25Cr1Mo0.25V Steel

More Information
  • Received Date: May 06, 2018
  • Revised Date: May 15, 2019
  • Coarse-grained heat-affected zone (CGHAZ) simulation specimens of 2.25Cr1Mo0.25V steel welded joint were prepared with different parameters, and the optimal thermal simulation parameters were determined by comparing hardness, grain size and microstructure with those of the actual joint CGHAZ. And then the CGHAZ specimen was simulated with the optimal parameters. The stress relaxation behavior of the specimen at 675℃ was studied, the reheat cracking process was analyzed, and the reheat cracking strain criterion was obtained. The results show that the optimal thermal simulation parameters were listed as follows:heat input of 30 kJ·cm-1, preheating temperature of 200℃, heating rate of 1 000℃·s-1, peak temperature of 1 320℃, time on peak temperature of 1 s. The microstructure of the obtained CGHAZ specimen consisted of lath bainite, with grain size of grade 4.5. The stress relaxation behaviors of CGHAZ specimen were similar under different initial stresses. The critical failure creep strains were all about 0.31%. The critical failure creep strain can be regarded as the reheat cracking strain criterion, and can be used to evaluate the post-welding heat treatment process of the steel as the creep strain demarcation point for characterizing the sensitivity of CGHAZ reheat crack.
  • [1]
    SHIMOMURA J, NAKANO Y, UEDA S, et al. Development of V-modified 21/4~3Cr-1Mo steels for high temperature service[J].Design & Analysis,1989,2:1013-1020.
    [2]
    柳曾典, 陈进, 卜华全, 等. 2.25Cr-1Mo-0.25V钢加氢反应器开发与制造中的一些问题[J]. 压力容器, 2011, 28(5):33-40.
    [3]
    DHOOGE A, VINCKIER A. Reheat cracking:A review of recent studies[J]. International Journal of Pressure Vessels and Piping, 1987, 27(4):239-269.
    [4]
    卜华全,罗雪梅. 钒改进钢在压力容器中的应用及发展趋势[J]. 石油和化工设备,2012,15(1):5-8.
    [5]
    牛济泰.材料和热加工领域的物理模拟技术[M]. 北京:国防工业出版社, 1999.
    [6]
    VINCKIER A, DHOOGE A. Susceptibility to reheat cracking of nuclear pressure vessel steels[R]. London:International Institute of Welding, 1975.
    [7]
    CHAUVY C, PILLOT S. Prevention of weld metal reheat cracking during Cr-Mo-V heavy reactors fabrication[C]//ASME 2009 Pressure Vessels and Piping Conference. Prague, Czech Republic:ASME, 2009:243-251.
    [8]
    HAN Y, CHEN X, FAN Z, et al. Reheat cracking sensitivity of CGHAZ in vanadium-modified 2.25Cr1Mo welds[C]//ASME 2014 Pressure Vessels and Piping Conference. Anaheim, California:ASME, 2014:V06AT06A062.
    [9]
    NAWROCKI J G, DUPONT J N, ROBINO C V, et al. The mechanism of stress-relief cracking in a ferritic alloy steel[J]. Welding Journal, 2003, 82(S2):25-35.
    [10]
    李丽, 曲赞坤, 王嘉麟. 热模拟法研究消除应力裂纹[J]. 东北大学学报(自然科学版), 1998, 19(1):11-14.
    [11]
    李前, 王永和, 查克勇, 等. CF-62钢球罐再次组焊的再热裂纹敏感性[J].机械工程材料, 2008, 32(4):14-15.
    [12]
    BO C, SPINDLER M W, SMITH D J, et al. Effect of thermo-mechanical history on reheat cracking in 316H austenitic stainless steel weldments[C]//ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington:ASME, 2010:357-363.
    [13]
    American Petroleum Institute. Damage mechanisms affecting fixed equipment in the refining industry:API 571[S]. Malaysia:API, 2011.
    [14]
    SKELTON R P, GOODALL I W, WEBSTER G A, et al. Factors affecting reheat cracking in the HAZ of austenitic steel weldments[J]. International Journal of Pressure Vessels and Piping, 2003, 80(7/8):441-451.
    [15]
    TSAI M C, CHIOU C S, YANG J R. Microstructural evolution of simulated heat-affected zone in modified 2.25Cr-1Mo steel during high temperature exposure[J]. Journal of Materials Science, 2003, 38(11):2373-2391.
    [16]
    韩一纯. 2.25Cr1Mo0.25V钢再热裂纹生成机理研究[D]. 合肥:中国科学技术大学, 2015.
    [17]
    张皓羽. 基于松弛应变控制的2.25Cr1Mo0.25V钢CGHAZ再热裂纹开裂判据研究[D].上海:华东理工大学, 2017.
    [18]
    SUNG H J, HEO N H, KIM S. Roles of molybdenum and tungsten on reheat cracking susceptibility of 2.25Cr heat resistant steels[J]. ISIJ International, 2017, 57(1):176-180.
    [19]
    DHOOGE A, DOLBY R E, SEBILLE J, et al. A review of work related to reheat cracking in nuclear reactor pressure vessel steels[J]. International Journal of Pressure Vessels and Piping, 1978, 6(5):329-409.
    [20]
    张相权, 陈泽圻, 周光棋, 等. 用插销法研究焊接再热裂缝:对14MnMoNbB、BHW38、15MnVNCu三种压力容器用钢再热裂缝敏感性的评定[J]. 焊接学报, 1981, 2(2):75-84.
    [21]
    TURSKI M, BOUCHARD P J, STEUWER A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel[J]. Acta Materialia, 2008, 56(14):3598-3612.
    [22]
    韩一纯, 陈学东, 范志超, 等. 热输入对2.25Cr1MoV钢粗晶热影响区再热裂纹敏感性的影响[J]. 机械工程学报, 2015, 51(6):2-8.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return