Citation: | ZHOU Shuang, TAN Jianping, LIU Changjun, ZHANG Haoyu, CHEN Jin. Strain Criterion of Reheat Cracking in 2.25Cr1Mo0.25V Steel[J]. Materials and Mechanical Engineering, 2019, 43(6): 12-17. DOI: 10.11973/jxgccl201906003 |
[1] |
SHIMOMURA J, NAKANO Y, UEDA S, et al. Development of V-modified 21/4~3Cr-1Mo steels for high temperature service[J].Design & Analysis,1989,2:1013-1020.
|
[2] |
柳曾典, 陈进, 卜华全, 等. 2.25Cr-1Mo-0.25V钢加氢反应器开发与制造中的一些问题[J]. 压力容器, 2011, 28(5):33-40.
|
[3] |
DHOOGE A, VINCKIER A. Reheat cracking:A review of recent studies[J]. International Journal of Pressure Vessels and Piping, 1987, 27(4):239-269.
|
[4] |
卜华全,罗雪梅. 钒改进钢在压力容器中的应用及发展趋势[J]. 石油和化工设备,2012,15(1):5-8.
|
[5] |
牛济泰.材料和热加工领域的物理模拟技术[M]. 北京:国防工业出版社, 1999.
|
[6] |
VINCKIER A, DHOOGE A. Susceptibility to reheat cracking of nuclear pressure vessel steels[R]. London:International Institute of Welding, 1975.
|
[7] |
CHAUVY C, PILLOT S. Prevention of weld metal reheat cracking during Cr-Mo-V heavy reactors fabrication[C]//ASME 2009 Pressure Vessels and Piping Conference. Prague, Czech Republic:ASME, 2009:243-251.
|
[8] |
HAN Y, CHEN X, FAN Z, et al. Reheat cracking sensitivity of CGHAZ in vanadium-modified 2.25Cr1Mo welds[C]//ASME 2014 Pressure Vessels and Piping Conference. Anaheim, California:ASME, 2014:V06AT06A062.
|
[9] |
NAWROCKI J G, DUPONT J N, ROBINO C V, et al. The mechanism of stress-relief cracking in a ferritic alloy steel[J]. Welding Journal, 2003, 82(S2):25-35.
|
[10] |
李丽, 曲赞坤, 王嘉麟. 热模拟法研究消除应力裂纹[J]. 东北大学学报(自然科学版), 1998, 19(1):11-14.
|
[11] |
李前, 王永和, 查克勇, 等. CF-62钢球罐再次组焊的再热裂纹敏感性[J].机械工程材料, 2008, 32(4):14-15.
|
[12] |
BO C, SPINDLER M W, SMITH D J, et al. Effect of thermo-mechanical history on reheat cracking in 316H austenitic stainless steel weldments[C]//ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington:ASME, 2010:357-363.
|
[13] |
American Petroleum Institute. Damage mechanisms affecting fixed equipment in the refining industry:API 571[S]. Malaysia:API, 2011.
|
[14] |
SKELTON R P, GOODALL I W, WEBSTER G A, et al. Factors affecting reheat cracking in the HAZ of austenitic steel weldments[J]. International Journal of Pressure Vessels and Piping, 2003, 80(7/8):441-451.
|
[15] |
TSAI M C, CHIOU C S, YANG J R. Microstructural evolution of simulated heat-affected zone in modified 2.25Cr-1Mo steel during high temperature exposure[J]. Journal of Materials Science, 2003, 38(11):2373-2391.
|
[16] |
韩一纯. 2.25Cr1Mo0.25V钢再热裂纹生成机理研究[D]. 合肥:中国科学技术大学, 2015.
|
[17] |
张皓羽. 基于松弛应变控制的2.25Cr1Mo0.25V钢CGHAZ再热裂纹开裂判据研究[D].上海:华东理工大学, 2017.
|
[18] |
SUNG H J, HEO N H, KIM S. Roles of molybdenum and tungsten on reheat cracking susceptibility of 2.25Cr heat resistant steels[J]. ISIJ International, 2017, 57(1):176-180.
|
[19] |
DHOOGE A, DOLBY R E, SEBILLE J, et al. A review of work related to reheat cracking in nuclear reactor pressure vessel steels[J]. International Journal of Pressure Vessels and Piping, 1978, 6(5):329-409.
|
[20] |
张相权, 陈泽圻, 周光棋, 等. 用插销法研究焊接再热裂缝:对14MnMoNbB、BHW38、15MnVNCu三种压力容器用钢再热裂缝敏感性的评定[J]. 焊接学报, 1981, 2(2):75-84.
|
[21] |
TURSKI M, BOUCHARD P J, STEUWER A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel[J]. Acta Materialia, 2008, 56(14):3598-3612.
|
[22] |
韩一纯, 陈学东, 范志超, 等. 热输入对2.25Cr1MoV钢粗晶热影响区再热裂纹敏感性的影响[J]. 机械工程学报, 2015, 51(6):2-8.
|
[1] | LIU Peixing. High-Speed Tensile Properties and Their Finite Element Simulation at Different Positions of CR1500HF Hot-Forming Steel U-shaped Parts[J]. Materials and Mechanical Engineering, 2021, 45(5): 96-99,104. DOI: 10.11973/jxgccl202105017 |
[2] | XU Leqian, GAO Yubo, MENG Xiaoling. Finite Element Simulation of Temperature Rise and Strain of AISI1015 SteelWorkpiece During Mini Mill Rolling[J]. Materials and Mechanical Engineering, 2021, 45(2): 78-84. DOI: 10.11973/jxgccl202102014 |
[3] | WEI Wenlan, HAN Lihong, FENG Yaorong, WANG Hang, TIAN Tao. High Temperature Low Cycle Fatigue Behavior of 80SH Steel for Thermal Recovery Well Casing Affected by Dynamic Strain Aging[J]. Materials and Mechanical Engineering, 2019, 43(9): 54-59. DOI: 10.11973/jxgccl201909011 |
[4] | FENG Qingfeng, YAO Zaiqi, YE Tuo, ZHU Ling, WANG Zhenhu, GUO Pengcheng, LI Luoxing. Dynamic Mechanical Behavior and Numerical Simulation of 6013-T4 Aluminum Alloy at Different Temperatures and Strain Rates[J]. Materials and Mechanical Engineering, 2017, 41(7): 85-90,97. DOI: 10.11973/jxgccl201707017 |
[5] | NIU Rui-feng, SHANG Liang, ZHU Yi-qiao, CAO Yi-shan, TAN Yong-ning. Reheat Embrittlement Behavior of CGHAZ in Welded Joint of 12Cr1MoV Steel[J]. Materials and Mechanical Engineering, 2015, 39(6): 79-83. DOI: 10.11973/jxgccl201506016 |
[6] | HU Mei-juan, HAN Xin-li, HE Xiao-dong, LI Jin-feng, ZHANG Lei. Effect of Cooling Time Following Welding on Microstructure of Welding Coarse Grain Heat Affected Zone of X80 High-Strain Pipeline Steel[J]. Materials and Mechanical Engineering, 2012, 36(6): 42-44. |
[7] | ZHU Guo-ming, KANG Yong-lin, LV Chao. Simulation about the Influence of Stamping, Springback and Strain Rate on Collision Performance of Dual-Phase Steel Parts[J]. Materials and Mechanical Engineering, 2011, 35(7): 100-104. |
[8] | DONG Xian-juan, LU Shi-qiang, WANG Ke-lu, FANG Jun, WU Chao. Optimization of Forging Processing Parameters in β Phase Field of Coarse Lamellar TA15 Titanium Alloy Based on Murty Criterion[J]. Materials and Mechanical Engineering, 2009, 33(7): 67-71. |
[9] | SUN Jun-sheng, CHEN Ye, LUAN Shou-cheng, WANG Hou-xiao. Study on the Simulated CGHAZ Microstructure and Property of JG590 Steel[J]. Materials and Mechanical Engineering, 2007, 31(6): 76-78. |
[10] | ZHANG Hong-ying, ZHANG Hong-bing, CHEN Hao-shi. Effect of Strain Rate on Compressive True Stress-strain Curves of Steels[J]. Materials and Mechanical Engineering, 2007, 31(4): 92-94. |