• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
BU Linsen, WANG Min, HAO Qingguo, YANG Qi, LI Wei. Microstructure and Mechanical Properties of a Precipitate-HardenedFe-C-Mn-Ni Austenitic Alloy Steel[J]. Materials and Mechanical Engineering, 2020, 44(8): 57-62. DOI: 10.11973/jxgccl202008012
Citation: BU Linsen, WANG Min, HAO Qingguo, YANG Qi, LI Wei. Microstructure and Mechanical Properties of a Precipitate-HardenedFe-C-Mn-Ni Austenitic Alloy Steel[J]. Materials and Mechanical Engineering, 2020, 44(8): 57-62. DOI: 10.11973/jxgccl202008012

Microstructure and Mechanical Properties of a Precipitate-HardenedFe-C-Mn-Ni Austenitic Alloy Steel

More Information
  • Received Date: March 05, 2020
  • Revised Date: June 28, 2020
  • Fe-C-Mn-Ni-X (where X stands for Cr, V, etc.) austenitic alloy steel forgings were solid solution and aging treated. The effects of aging temperature (650, 700, 750 ℃) and aging time (0-25 h) on the microstructure and mechanical properties of the alloy steel were studied. The results show that the microstructure of solid solution treated and aging treated steels were similar. After aging treatment, a large amount of nano-VC phases in co-lattice or semi-co-lattice orientation with the austenite matrix were precipitated in the alloy steel. The solid solution treated alloy steel showed a strong age hardening capability, the aging time to reach the peak hardness was shorted with increasing aging temperature, and the peak hardness decreased. After aging treatment, the yield strength and tensile strength of the alloy steel increased significantly, the elongation and work hardening index decreased, and the tensile failure mode changed from ductile fracture to ductile-brittle mixed fracture. With the aging temperature increasing and the aging time extending, the strength of the alloy steel was reduced, but the work hardening ability was enhanced.
  • [1]
    ALLAIN S,CHATEAU J P,BOUAZIZ O,et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Materials Science and Engineering:A, 2004,387/388/389:158-162.
    [2]
    KIM H,SUH D W,KIM N J.Fe-Al-Mn-C lightweight structural alloys:A review on the microstructures and mechanical properties[J].Science and Technology of Advanced Materials, 2013,14(1):014205.
    [3]
    PARK K T,JIN K G,HAN S H,et al.Stacking fault energy and plastic deformation of fully austenitic high manganese steels:Effect of Al addition[J].Materials Science and Engineering:A, 2010,527(16/17):3651-3661.
    [4]
    GALINDO-NAVA E I,RIVERA-DÍAZ-DEL-CASTILLO P E J.Understanding martensite and twin formation in austenitic steels:A model describing TRIP and TWIP effects[J].Acta Materialia, 2017,128:120-134.
    [5]
    DE COOMAN B C,KWON O,CHIN K G.State-of-the-knowledge on TWIP steel[J].Materials Science and Technology, 2012,28(5):513-527.
    [6]
    张维娜,刘振宇,王国栋.高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J].金属学报,2010,46(10):1230-1236.
    [7]
    丁桦,杨平.高锰TRIP/TWIP钢变形行为的研究进展[J].材料与冶金学报,2010,9(4):265-272.
    [8]
    CHEN S P,RANA R,HALDAR A,et al.Current state of Fe-Mn-Al-C low density steels[J].Progress in Materials Science,2017,89:345-391.
    [9]
    SEVILLANO G J.An alternative model for the strain hardening of FCC alloys that twin,validated for twinning-induced plasticity steel[J].Scripta Materialia,2009,60(5):336-339.
    [10]
    WU Z Q,DING H,AN X H,et al.Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J].Materials Science and Engineering:A, 2015,639:187-191.
    [11]
    SOLENTHALER C,RAMESH M,UGGOWITZER P J,et al.Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C,N) formed upon a short-term hardening heat treatment[J].Materials Science and Engineering:A,2015,647:294-302.
    [12]
    CHI C Y,YU H Y,DONG J X,et al.The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application[J].Progress in Natural Science:Materials International, 2012,22(3):175-185.
    [13]
    SAGARADZE V V,KOSITSYNA I I,MUKHIN M L,et al.High-strength precipitation-hardening austenitic Fe-Mn-V-Mo-C steels with shape memory effect[J].Materials Science and Engineering:A, 2008,481/482:747-751.
    [14]
    MOON J,LEE T H,HEO Y U,et al.Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel[J].Materials Science and Engineering:A, 2015,645:72-81.
    [15]
    OU P,XING H,SUN J.Precipitation of nanosized MX at coherent Cu-rich phases in Super304H austenitic steel[J].Metallurgical and Materials Transactions A, 2015,46(1):1-5.
    [16]
    ZHAO W X,ZHOU D Q,JIANG S H,et al.Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure[J].Materials Science and Engineering:A, 2018,738:295-307.
    [17]
    唐仁政,田荣璋.二元合金相图及中间相晶体结构[M].长沙:中南大学出版社,2009.
    [18]
    ZHOU Y H,LIU C X,LIU Y C,et al.Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging[J].International Journal of Minerals,Metallurgy,and Materials, 2016,23(3):283-293.
    [19]
    BAI J W,LIU P P,ZHU Y M,et al.Coherent precipitation of copper in Super304H austenite steel[J].Materials Science and Engineering:A,2013,584:57-62.
    [20]
    XI T,BABAR SHAHZAD M,XU D K,et al.Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel:A comprehensive cross-correlation study[J].Materials Science and Engineering:A, 2016,675:243-252.
    [21]
    SU J H,DONG Q M,LIU P,et al.Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J].Materials Science and Engineering:A, 2005,392(1/2):422-426.
    [22]
    WANG Y L,SONG Y Y,JIANG H C,et al.Variation of nanoparticle fraction and compositions in two-stage double peaks aging precipitation of Al-Zn-Mg alloy[J].Nanoscale Research Letters, 2018,13:131.

Catalog

    Article views (3) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return