Citation: | HU Runchuan, LAI Chengban, MIN Yongan. Formation Mechanism of Irregular Carbides in Raceway ofGCr15 Steel Bearing Inner Ring[J]. Materials and Mechanical Engineering, 2021, 45(2): 55-60. DOI: 10.11973/jxgccl202102010 |
[1] |
BHADESHIA H K D H.Steels for bearings[J].Progress in Materials Science, 2012,57(2):268-435.
|
[2] |
WANG Y,LEI T C,GAO C Q.An observation of a filiform wear product in bearing steel 52100[J].Wear, 1989,134(2):231-236.
|
[3] |
易诚.热处理对重载轴承材料耐磨性能的影响研究[D].成都:西南石油大学,2017. YI C. Effect of heat treatment on wear resistance of heavy load bearing materials[D]. Chengdu:Southwest Petroleum University, 2017.
|
[4] |
SADEGHI F,JALALAHMADI B,SLACK T S,et al.A review of rolling contact fatigue[J].Journal of Tribology, 2009,131(4):041403.
|
[5] |
濑户浩藏. 轴承钢:在20世纪诞生并飞速发展的轴承钢[M]. 北京:冶金工业出版社, 2003.
SETO H. Bearing steel:Bearing steel born and developed rapidly in the 20th century[M]. Beijing:Metallurgical Industry Press, 2003.
|
[6] |
SHIOZAWA K,MORⅡ Y,NISHINO S,et al.Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J].International Journal of Fatigue, 2006,28(11):1521-1532.
|
[7] |
逯志方,苑希现,王伟,等.高温扩散对轴承钢低倍组织和碳化物不均匀性的影响[J]. 钢铁研究学报,2017,29(2):144-149.
LI Z F, YUAN X X, WANG W,et. Influence of high-temperature diffusion on macrostructure and carbide inhomogeneity of bearing steel[J]. Journal of Iron and Steel Research,2017,29(2):144-149.
|
[8] |
曾伊琪.GCr15轴承钢的碳化物超细化[J]. 轴承, 2015(7):25-28.
ZENG Y Q. Carbide ultrafining in bearing steel GCr15[J]. Bearing,2015(7):25-28.
|
[9] |
王艳山, 陈小超, 尤蕾蕾, 等. GCr15轴承钢双细化工艺研究[J].金属加工(热加工), 2018(9):52-54.
WANG Y S, CHEN X C, YOU L L,et. Study on double thinning technology for GCr15bearing steel[J]. MW Metal Forming,2018(9):52-54.
|
[10] |
孔永华, 周江龙, 陈桥. GCr15钢钢领碳化物的双细化研究[J].热加工工艺, 2018, 47(2):224-227.
KONG Y H, ZHOU J L, CHEN Q. Study on double refinement of carbide in GCr15 steel rings[J]. Hot Working Technology,2018,47(2):224-227.
|
[11] |
孙艳坤. 轴承钢热轧组织控制机理与超快速冷却研究[D]. 沈阳:东北大学, 2009. SUN Y K. Research of microstructure controlling mechanism and ultra-fast cooling process of bearing steel after hot rolling[D]. Shenyang:Northeast University, 2009.
|
[12] |
李凡. GCr15轴承钢热轧及球化退火组织性能研究[D]. 沈阳:东北大学, 2014. LI F. Research on the structure and performance of GCr15 bearing steel during hot rolling and spheroidization[D]. Shenyang:Northeast University,2014.
|
[13] |
周旺松. GCr15SiMn钢碳化物均匀性控制及其机理研究[D]. 西安:西安建筑科技大学, 2015.
ZHOU W S. Study on the control of the uniformity of carbide and its mechanism in GCr15SiMn bearing steel[D]. Xi'an:Xi'an University of Architecture and Technology, 2015.
|
[14] |
肖永畅. GCr15轴承钢晶界二次碳化物球化机制[J]. 大连特殊钢, 1998(2):27-33.
XIAO Y C. Mechanism of secondary carbide spheroidization at grain boundary of GCr15 bearing Steel[J]. Dalian Special Steel, 1998(2):27-33.
|
[1] | ZHOU Xinyu, HU Zhihua, LUAN Daocheng, WANG Zhengyun, LIN Shaobin. Effect of Welding Heat Input on Microstructure and Properties of 0Cr13Ni4Mo Martensitic Stainless Steel Arc Welded Joint[J]. Materials and Mechanical Engineering, 2024, 48(9): 38-43. DOI: 10.11973/jxgccl230261 |
[2] | DONG Weiwei, LIN Jian, XU Hailiang, FU Hanguang, LEI Yongping, WANG Xibo. Pulsed Laser Welding Process of SUS304 Stainless Steel Sheet and Microstructure and Mechanical Properties of Joint[J]. Materials and Mechanical Engineering, 2019, 43(5): 38-42,48. DOI: 10.11973/jxgccl201905008 |
[3] | LI Anmin, XU Fei, GUO Baohang, KONG Deming, WANG Fuwei. Microstructure and Mechanical Properties of AlNiFeCuCoCrVx High-Entropy Alloy[J]. Materials and Mechanical Engineering, 2019, 43(4): 48-52. DOI: 10.11973/jxgccl201904011 |
[4] | LIANG Jingwei, QIU Xiaoming, HU Qingwei, LIU Wensheng, LIU Yongcheng. Microstructure and Mechanical Properties of Laser Welded Dissimilar Joint of DP780/HC660 Dual-phase Steels with Different Thicknesses[J]. Materials and Mechanical Engineering, 2018, 42(1): 54-58,63. DOI: 10.11973/jxgccl201801011 |
[5] | ZHANG Yuqing, WEI Jinshan, MA Chengyong, AN Tongbang, XU Yusong. Microstructure and Mechanical Properties of 10Ni5CrMoV Steel MAG Welded Joint[J]. Materials and Mechanical Engineering, 2017, 41(8): 75-79. DOI: 10.11973/jxgccl201708017 |
[6] | YANG Zhi-hua, YANG Shang-lei, TUO Wen-hai, JIANG Yi-shuai, WANG Yan, ZHANG Dong-mei. Effects of Welding Speed on Microstructure and Mechanical Properties of Laser Welded Joint of TRIP590 High Strength Steel[J]. Materials and Mechanical Engineering, 2017, 41(4): 94-97,102. DOI: 10.11973/jxgccl201704020 |
[7] | ZHANG Min, XU Ai-yan, WANG Qiang, LI Ji-hong. Microstructure and Mechanical Properties of 12Cr1MoV Steel Welded Joint after High Temperature Service[J]. Materials and Mechanical Engineering, 2016, 40(2): 98-101. DOI: 10.11973/jxgccl201602023 |
[8] | ZHOU Cui, WANG Bin, ZHU Jia-xiang, SHEN Kun. Microstructure and Mechanical Properties of X70 Pipeline Steel with High Deformability[J]. Materials and Mechanical Engineering, 2014, 38(10): 32-36. |
[9] | XU Feng. Microstructure and Mechanical Properties of Capacitor Spot Welding Joint of Stainless Steel Sheet[J]. Materials and Mechanical Engineering, 2010, 34(6): 64-66. |
[10] | MA Qi-hui, WANG Shao-gang, LI Yan, ZHANG Liang. Microstructure and Properties of Welding Joint between SAF2205 Duplex Stainless Steel and 16MnR Steel[J]. Materials and Mechanical Engineering, 2010, 34(6): 17-20. |