• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
WEI Yazhou, LIU Yifan, LI Xianglong. Microstructure and Particle Size Distribution of Cu-Ni Alloy Powder Preparedby Different Power Ultrasonic Assisted Electrical Discharge Machining[J]. Materials and Mechanical Engineering, 2023, 47(1): 76-80. DOI: 10.11973/jxgccl202301011
Citation: WEI Yazhou, LIU Yifan, LI Xianglong. Microstructure and Particle Size Distribution of Cu-Ni Alloy Powder Preparedby Different Power Ultrasonic Assisted Electrical Discharge Machining[J]. Materials and Mechanical Engineering, 2023, 47(1): 76-80. DOI: 10.11973/jxgccl202301011

Microstructure and Particle Size Distribution of Cu-Ni Alloy Powder Preparedby Different Power Ultrasonic Assisted Electrical Discharge Machining

More Information
  • Received Date: August 29, 2021
  • Revised Date: October 13, 2022
  • Cu-Ni alloy powders were synthesized by ultrasonic assisted electrical discharge machining (EDM) method with copper and nickel metals as positive and negative electrodes, respectively. The effects of ultrasonic power (0, 500, 1 000, 1 500 W) on the crystal structure, micromorphology and particle size distribution of the alloy powder were investigated. The results show that the phases of Cu-Ni alloy powders synthesized by ultrasonic assisted EDM under different power conditions were all composed of Cu0.81Ni0.19, Ni, CuO, NiO and Fe2O3. The main crystal phase Cu0.81Ni0.19 had a face-centered cubic structure. With increasing ultrasonic power, the diffraction peak intensity of the Cu0.81Ni0.19 increased while the full width at half maximum became narrower, indicating the better crystallinity of the powder. Irregular particles with large size appeared in Cu-Ni alloy powders synthesized by the ultrasonic assisted method, but the size of spherical particles decreased and the distribution range of particle size became wider. With increasing ultrasonic power, the average particle size D50 decreased.
  • [1]
    SUN J, CHEN Y R, HUANG K K, et al.Interfacial electronic structure and electrocatalytic performance modulation in Cu0.81Ni0.19 nanoflowers by heteroatom doping engineering using ionic liquid dopant[J].Applied Surface Science, 2020, 500:144052.
    [2]
    MUNTEAN A, WAGNER M, MEYER J, et al.Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge[J].Journal of Nanoparticle Research, 2016, 18(8):229.
    [3]
    OVERMAN N R, LI X, OLSZTA M J, et al.Microstructural progression of shear-induced mixing in a CuNi alloy[J].Materials Characterization, 2021, 171:110759.
    [4]
    MANZANO C V, CABALLERO-CALERO O, TRANCHANT M, et al.Thermal conductivity reduction by nanostructuration in electrodeposited CuNi alloys[J].Journal of Materials Chemistry C, 2021, 9(10):3447-3454.
    [5]
    SHERVANI-TABAR M T, MOBADERSANY N.Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM[J].Ultrasonic, 2013, 53(5):943-955.
    [6]
    林发明, 侯启龙, 王杰, 等.超声辅助电火花放电制备微纳米镍颗粒中超声功率对颗粒粒径的影响[J].材料导报, 2021, 35(2):2115-2119.

    LIN F M, HOU Q L, WANG J, et al.Impact of ultrasonic power on particle size in ultrasonic assisted EDM preparation of nanometer nickel particles[J].Materials Reports, 2021, 35(2):2115-2119.
    [7]
    MOGHTADA A, SHAHROUZIANFAR A, ASHIRI R.Low-temperature ultrasound synthesis of nanocrystals CoTiO3 without a calcination step:Effect of ultrasonic waves on formation of the crystal growth mechanism[J].Advanced Powder Technology, 2017, 28(4):1109-1117.
    [8]
    LIU Y F, LI X L, LI Y, et al.The formation mechanism and morphology of the nickel particles by the ultrasound-aided spark discharge in different liquid media[J].Advanced Powder Technology, 2016, 27(6):2399-2408.
    [9]
    赵占奎, 李翔龙, 刘一凡, 等.电火花-超声复合技术制备镍微米空心球的研究[J].材料导报, 2017, 31(14):72-76.

    ZHAO Z K, LI X L, LIU Y F, et al.Preparation of nickel hollow microspheres by ultrasonic-aided spark discharge[J].Materials Review, 2017, 31(14):72-76.
    [10]
    LIU Y F, LI X L, BAI F S, et al.Effect of system parameters on the size distributions of hollow nickel microspheres produced by an ultrasound-aided electrical discharge machining process[J].Particuology, 2014, 17:36-41.
    [11]
    GHOMI H, YOUSEFI M, SHAHABI N, et al. Ultrasonic-assisted spark plasma discharge for gold nanoparticles synthesis[J]. Radiation Effects and Defects in Solids, 2013, 168(11/12):881-891.
    [12]
    LIU Y F, LI X L, LI Y, et al.The lattice distortion of nickel particles generated by spark discharge in hydrocarbon dielectric mediums[J].Applied Physics A, 2016, 122(3):174.
    [13]
    侯启龙, 刘一凡, 林发明, 等.聚焦超声辅助电火花制备多尺度镍粉时超声功率对镍粉粒径的影响[J].材料导报, 2020, 34(16):16114-16118.

    HOU Q L, LIU Y F, LIN F M, et al.Effect of ultrasonic power on the particle size of multiscale nickel powders produced by the focused ultrasound-assisted electrical discharge machining[J].Materials Reports, 2020, 34(16):16114-16118.
    [14]
    汪衍涛, 李翔龙, 刘一凡, 等.电火花-超声复合加工法制备镍微球时非电工艺参数对镍微球尺寸的影响规律[J].机械工程学报, 2015, 51(11):195-200.

    WANG Y T, LI X L, LIU Y F, et al.Effect of non-electrical parameters on the size of nickel microspheres produced by an ultrasound-aided electrical discharge machining[J].Journal of Mechanical Engineering, 2015, 51(11):195-200.
    [15]
    刘南, 李翔龙, 刘一凡, 等.电火花-超声复合加工制备微纳空心球的影响因素探讨[J].现代制造工程, 2013(11):16-19.

    LIU N, LI X L, LIU Y F, et al.Discussion of the influence of the dielectric fluid on the process of the micro-nano spheres produced by EDM with USM[J].Modern Manufacturing Engineering, 2013(11):16-19.
    [16]
    LIU Y F, ZHU K L, LI X L, et al.Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water[J].Advanced Powder Technology, 2018, 29(4):863-873.
    [17]
    金焱, 毕学工, 张晶.超声波对液相中微颗粒凝聚过程的作用机理[J].过程工程学报, 2011, 11(4):620-626.

    JIN Y, BI X G, ZHANG J.Study of coagulation mechanism of particles in liquid under ultrasonic treatment[J].The Chinese Journal of Process Engineering, 2011, 11(4):620-626.
  • Related Articles

    [1]CHEN Chuan, ZHANG Qiang, CAO Zhengfeng. Effect of Raw Material Powder Particle Size on Microstructure and Magnetic Properties of NiCuZn Soft Magnetic Ferrite[J]. Materials and Mechanical Engineering, 2023, 47(4): 61-66. DOI: 10.11973/jxgccl202304012
    [2]NIE Zhichao, YAN Yangxian, HONG Jiating, LIAO Hangyu, SONG Wenlong, ZOU Jinming, ZHANG Xuehui. Effect of Ti2AlC Particle Size Distribution on Microstructure and Properties of TiC0.5-Al2O3/Cu Composites[J]. Materials and Mechanical Engineering, 2023, 47(3): 66-71. DOI: DOI: 10.11973/jxgccl202303012
    [3]DING Qingyun, MA Dan, ZHAO Hongbao, MA Chaoqun, LUO Xinyi. Effect of Raw Material Particle Size on Compression Performance and Energy Release Characteristics of Ni/Al Energetic Structural Material[J]. Materials and Mechanical Engineering, 2022, 46(1): 7-13. DOI: 10.11973/jxgccl202201002
    [4]GU Jian, LI Dongqing, LIU Shengchun, SI Jiajun, LIU Peng, CHEN Ran, CAO Zhen. Effect of SiC Particle Size on Microstructure and Mechanical Properties of SiCp/2024 Aluminum Alloy Composite[J]. Materials and Mechanical Engineering, 2020, 44(9): 77-81. DOI: 10.11973/jxgccl202009014
    [5]LI Xiang, ZHANG Xiu-xiang, DAI Jiao-yan, ZHANG Xiu-qing, XU Jin-fu. Effect of Powder Size on Fracture Toughness of Zirconia Ceramics[J]. Materials and Mechanical Engineering, 2016, 40(10): 75-78. DOI: 10.11973/jxgccl201610017
    [6]HOU Huai-shu, ZHANG Suo-huai. Particle Size Measurement of Nanoparticles Based on Ultrasonic Wave with Low and Medium Frequencies[J]. Materials and Mechanical Engineering, 2011, 35(5): 80-82.
    [7]GUO Jun-jie, LI Zhuo-xin, LI Guo-dong, SU Mao-sheng. Effect of Powder Particle Size in Metal Cored Flux-Cored Wire on Quantity of Welding Fume and Arc Stability[J]. Materials and Mechanical Engineering, 2010, 34(10): 23-24.
    [8]XU Qian-fang, JIAN Miao-fu. Improvement of Measurement Precision for Particle Subsection Sedimentation by Inversion Iterative Algorithm[J]. Materials and Mechanical Engineering, 2008, 32(6): 16-18.
    [9]ZHANG Xiao-li, ZHUANG Chuan-jing, JI Ling-king, FENG Yao-rong, ZHAO Wen-zhen, HUO Chun-yong, WANG Jie-wu. Effective Particle Size of High Grade Pipeline Steels[J]. Materials and Mechanical Engineering, 2007, 31(3): 4-8.
    [10]PANG You-xia, LU You-nan, YIN Xi-yun. The Influence of Sediment Concentration and Particle Size on the Erosion Wearing Characteristics of QT500[J]. Materials and Mechanical Engineering, 2006, 30(4): 51-53.

Catalog

    Article views (4) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return