Citation: | CHENG Ansheng, LI Shuxin, LU Siyuan, CHEN Yinjun, JIN Yongsheng. Effect of Carbonitriding on Contact Fatigue Life and Failure Mechanism of Martensite Steel Bearing Inner Ring[J]. Materials and Mechanical Engineering, 2023, 47(12): 31-38. DOI: 10.11973/jxgccl202312006 |
[1] |
BHADESHIA H K D H.Steels for bearings[J].Progress in Materials Science. 2012. 57(2):268-435.
|
[2] |
杨晓蔚.滚动轴承产品技术发展的现状与方向[J].轴承. 2020(8):65-70.
YANG X W.Current situation and direction for technology development of rolling bearing products[J].Bearing. 2020(8):65-70.
|
[3] |
CAO Z X. LIU T Q. YU F. et al.Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel[J].International Journal of Fatigue. 2020. 131:105351.
|
[4] |
黎国猛. 梁益龙. 范航京. 等.水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J].材料导报. 2019. 33(18):3107-3112.
LI G M. LIANG Y L. FAN H J. et al.Effects of water jet shot peening pretreatment on contact fatigue properties of 42CrMo steel after plasma nitriding[J].Materials Reports. 2019. 33(18):3107-3112.
|
[5] |
SELÇUK B. IPEK R. KARAMIŞ M B.A study on friction and wear behaviour of carburized. carbonitrided and borided AISI 1020 and 5115 steels[J].Journal of Materials Processing Technology. 2003. 141(2):189-196.
|
[6] |
蒋港辉. 李淑欣. 蒲吉斌. 等.马氏体轴承钢碳氮共渗滚动接触疲劳失效机理[J].中国表面工程. 2022. 35(2):12-23.
JIANG G H. LI S X. PU J B. et al.Rolling contact fatigue failure mechanism of martensitic bearing steel after carbonitriding[J].China Surface Engineering. 2022. 35(2):12-23.
|
[7] |
SU Y S. LI S X. LU S Y. et al.Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J].International Journal of Fatigue. 2017. 105:160-168.
|
[8] |
ARAKERE N K.Gigacycle rolling contact fatigue of bearing steels:A review[J].International Journal of Fatigue. 2016. 93:238-249.
|
[9] |
苏云帅.滚动接触疲劳亚表面白色蚀刻组织本质及裂纹扩展路径研究[D].宁波:宁波大学. 2021. SU Y S.Investigation of essence of subsurface white etching area and crack growth path under rolling contact fatigue[D].Ningbo:Ningbo University. 2021.
|
[10] |
LAITHY E M. WANG L. HARVEY T J. et al.Further understanding of rolling contact fatigue in rolling element bearings:A review[J].Tribology International. 2019. 140:105849.
|
[11] |
谷臣清. 罗启文. 卢正欣.航空发动机轴承钢高温碳氮共渗的渗层组织与性能[J].金属热处理学报. 1998. 19(1):26-30.
GU C Q. LUO Q W. LU Z X.Microstructures and mechanical properties of the carbonitrided M50NiL steel[J].Transactions of Metal Heat Treatment. 1998. 19(1):26-30.
|
[12] |
WANG B. LIU B. GU J F. et al.Gaseous carbonitriding of high carbon chromium bearing steel:Correlation between composition. microstructure and stability[J].Surface and Coatings Technology. 2022. 438:128408.
|
[13] |
LIU B. WANG B. GU J F.Effect of ammonia addition on microstructure and wear performance of carbonitrided high carbon bearing steel AISI 52100[J].Surface and Coatings Technology. 2019. 361:112-118.
|
[14] |
RAJAN K. JOSHI V. GHOSH A.Effect of carbonitriding on endurance life of ball bearing produced from SAE 52100 bearing steels[J].Journal of Surface Engineered Materials and Advanced Technology. 2013. 3(3):172-177.
|
[15] |
冈本纯三. 黄志强. 罗继伟. 球轴承的设计计算[M]. 北京:机械工业出版社. 2003: 75-78.
OKAMOTO J. HUANG Z Q. LUO J W. Design calculations for ball bearings[M]. Beijing: China Machine Press. 2003: 75-78.
|
[16] |
刘宏基. 孙俊杰. 江涛. 等.一种超高碳钢的滚动接触疲劳研究[J].金属学报. 2014. 50(12):1446-1452.
LIU H J. SUN J J. JIANG T. et al.Rolling contact fatigue behavior of an ultrahigh carbon steel[J].Acta Metallurgica Sinica. 2014. 50(12):1446-1452.
|
[17] |
MURTHY D N P. XIE M. JIANG R. Weibull models[M]. Hoboken. NJ: John Wiley & Sons. Inc. 2004:121-129
|
[18] |
王一博. 李淑欣. 舒建明. 等.增加回火工序对GCr15轴承钢套圈变形的影响[J].机械工程材料. 2022. 46(11):66-70.
WANG Y B. LI S X. SHU J M. et al.Effect of adding tempering process on deformation of GCr15 bearing steel ring[J].Materials for Mechanical Engineering. 2022. 46(11):66-70.
|
[19] |
KIM S T. TADJIEV D. YANG H T.Fatigue life prediction under random loading conditions in 7475-T7351 aluminum alloy using the RMS model[J].International Journal of Damage Mechanics. 2006. 15(1):89-102.
|
[20] |
SONG J D. LUO S H. LIANG X Q. et al.Rolling contact fatigue and damage characteristic of AISI 9310 steel with pre-laser shock peening treatment[J].International Journal of Fatigue. 2022. 155:106588.
|
[21] |
张强. 孙世清. 杨卯生.32Cr3MoVE渗氮轴承钢的高应力滚动接触疲劳性能[J].机械工程材料. 2019. 43(9):38-42.
ZHANG Q. SUN S Q. YANG M S.High stress rolling contact fatigue properties of 32Cr3MoVE nitrided bearing steel[J].Materials for Mechanical Engineering. 2019. 43(9):38-42.
|
[22] |
CHEN Q. HAHN G T. RUBIN C A. et al.The influence of residual stresses on rolling contact mode II driving force in bearing raceways[J].Wear. 1988. 126(1):17-30.
|
[23] |
ZHAO P. HADFIELD M. WANG Y. et al.Subsurface propagation of partial ring cracks under rolling contact[J].Wear. 2006. 261(3/4):382-389.
|
[24] |
JOHNSON K L.Contact mechanics and the wear of metals[J].Wear. 1995. 190(2):162-170.
|
[25] |
LUNDBERG G. PALMGREN A.Dynamic capacity of rolling bearings[J].Journal of Applied Mechanics. 1949. 16(2):165-172.
|
[26] |
罗庆洪. 赵振业. 贺自强. 等.表层超硬化M50NiL钢接触疲劳失效机理[J].航空材料学报. 2017. 37(6):34-40.
LUO Q H. ZHAO Z Y. HE Z Q. et al.Failure mechanism of contact fatigue of surface super-hardened M50NiL steel[J].Journal of Aeronautical Materials. 2017. 37(6):34-40.
|
[1] | LI Yangyang, WANG Jixiang, ZHOU Peishan, XU Yingchao, WANG Bin. Fatigue Crack Propagation Behavior and Fatigue Life Prediction of L360MS Pipeline Steel Welded Joint in Bimetallic Composite Pipe[J]. Materials and Mechanical Engineering, 2025, 49(3): 105-113. DOI: 10.11973/jxgccl230625 |
[2] | QI Xiangyu, YAN Ling, DU Linxiu, LI Guanglong, ZHANG Peng, WANG Xiaohang. Fatigue Properties of CO2 Gas Shielded Welded Joint of High Strength and Toughness Medium-Mn Steel[J]. Materials and Mechanical Engineering, 2022, 46(7): 47-50,56. DOI: 10.11973/jxgccl202207009 |
[3] | WANG Lei, ZHAO Xinhua, CONG Jiahui, HUI Li, FU Qiang. Effect of Welding Process Parameters on Fatigue Property of 7B04-T6 Aluminum Alloy Friction Stir Spot Welded Joint[J]. Materials and Mechanical Engineering, 2020, 44(7): 28-32. DOI: 10.11973/jxgccl202007006 |
[4] | YU Shijie, CHEN Meng, OUYANG Zhiying. Early Fracture Cause of H13 Hot Die Steel Punch[J]. Materials and Mechanical Engineering, 2020, 44(3): 78-82,86. DOI: 10.11973/jxgccl202003015 |
[5] | QIAO Yaxia, ZHAO Lei, XU Lianyong, ZHANG Hao, ZHANG Pengfei, HAN Yongdian. Fatigue Property and Fracture Mechanism of 5754 Aluminum Alloy GTAW and FSW Joints[J]. Materials and Mechanical Engineering, 2019, 43(10): 30-34,40. DOI: 10.11973/jxgccl201910007 |
[6] | WEN Leilei, ZHOU Changyu, LI Jian, LU Lei. Fatigue Crack Propagation Rates in Different Zones of TA2 Titanium Alloy Welded Joint[J]. Materials and Mechanical Engineering, 2017, 41(11): 39-44. DOI: 10.11973/jxgccl201711007 |
[7] | CHAI Wu-qian, YANG Qiang-yun, YANG Chuan, GAO Guo-qing, CUI Guo-dong. Fracture Analysis of Tensioner Fastening Bolts for Automobiles[J]. Materials and Mechanical Engineering, 2015, 39(9): 103-105. DOI: 10.11973/jxgccl201509024 |
[8] | YU Yan, YANG Hai-feng, LIU Yun-xu. Fatigue Property of Spot Welded Jiont of TRIP Steel[J]. Materials and Mechanical Engineering, 2014, 38(6): 70-74. |
[9] | LI Xing-rui, NIU Ji-tai, YANG Shun-cheng. Analysis of the Welding Defects in Resistance Spot Welding of SiCp/6061Al Composites[J]. Materials and Mechanical Engineering, 2013, 37(4): 15-17. |
[10] | WANG Guo-yang, XU Wei-ping, ZHANG Bao-qi, WANG De-he. Fracture Failure Analyses of Piston Connecting Bolt of Diesel Engine for Ship[J]. Materials and Mechanical Engineering, 2006, 30(4): 92-94. |