Citation: | FENG Yin-cheng, LI Luo-xing, LIU Jie, LIU Bo, LIU Yang-sheng. Effect of Natural Aging on Microstructure and Mechanical Properties of 6061 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2011, 35(3): 18-21. |
[1] |
黄伯云, 李成功, 石力开, 等.中国材料工程大典[M].北京:化学工业出版社,2005.
|
[2] |
许珞萍, 邵光杰.汽车轻量化用金属材料及其发展动态[J].上海金属,2002,24(3):1-7.
|
[3] |
CHOU C Y, HSU C W, LEE S L,et al. Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusion[J].Journal of Materials Processing Technology,2008,202:1-6.
|
[4] |
丁向群, 何国求, 陈成澍, 等.6000系汽车用铝合金的研究应用进展[J].材料科学与工程学报,2005,23(2):302-305.
|
[5] |
GAVGALI M, TOTIK Y, SADELER R. The effects of artificial aging on wear properties of AA6063 alloy[J].Materials Letters,2003,57(24/25):3713-3721.
|
[6] |
彭志辉, 甘卫平.汽车工业用铝材的开发与应用[J].汽车工艺与材料,1999(4):1-6.
|
[7] |
黄佩贤.轻质材料铝合金在汽车上的应用[J].上海汽车,2002(1):37-38.
|
[8] |
KIM H H, CHO S H, KANG C G. Evaluation of microstructure and mechanical properties by using nano/micro-indentation and nanoscrath during aging treatment of reho-forged Al6061 alloy[J].Materials Science and Engineering A,2008,485:272-281.
|
[9] |
张胜华, 章冰, 肖荫果.时效制度对6063合金导热性能和硬度的影响[J].铝加工,2003(3):13-16.
|
[10] |
张鸿俭, 王玉林.6063合金的停放效应研究[J].金属科学与工艺,1989,8(3/4):37-41.
|
[11] |
MAHADEVAN K, RAGHUKANDAN K, SENTHILVELAN T,et al. Studies on the effect of delayed aging on the mechanical behaviour of AA6061 SiCp composite[J].Materials Science and Engineering A,2005,396:188-193.
|
[12] |
顾景城.铝合金时效过程[J].轻合金加工技术,1985(3):25-28.
|
[1] | CAI Xiaowen, REN Jun, LUO Xia. Semi-solid Compression Deformation Behavior and Constitutive Model Establishment of As-cast Mg-6Zn Alloy[J]. Materials and Mechanical Engineering, 2024, 48(5): 38-44. DOI: 10.11973/jxgccl202405007 |
[2] | PAN Guangyong, LUO Zhumei, LIN Chunlei. Flow Stress Constitutive Equation of As-cast GCr15SiMn Bearing Steel[J]. Materials and Mechanical Engineering, 2019, 43(10): 66-70. DOI: 10.11973/jxgccl201910013 |
[3] | YI Zhaoxiang, LI Xinhe, CHANG Shiwu, CAO Quan. Flow Stress Constitutive Equation of 2219 Aluminum Alloy During Hot Compression[J]. Materials and Mechanical Engineering, 2018, 42(7): 53-56. DOI: 10.11973/jxgccl201807011 |
[4] | ZHOU Qiu-yue, WU Xiao-dong, LIANG Yu, XIE Jian-feng, WU Shun, ZOU Lei. Hot-Compression Deformation Constitutive Equation of 60Si2CrVAT High-Strength Spring Steel[J]. Materials and Mechanical Engineering, 2017, 41(4): 29-32,57. DOI: 10.11973/jxgccl201704007 |
[5] | XU Dao-fen. Establishment of Compression Creep Constitutive Equations of Mg-4Al-2RE Alloy[J]. Materials and Mechanical Engineering, 2015, 39(5): 85-88. |
[6] | HE Jian-hong, SUN Yong, DUAN Yong-hua, FANG Dong-sheng. Effect of Deformation Conditions of Pb-Mg-Al Alloy during Hot Compression on Flow Stress and Its Constitutive Equation[J]. Materials and Mechanical Engineering, 2013, 37(3): 95-98. |
[7] | YUAN Wu-hua, FU Qiang. Flow Stress Behavior of 10B06 Cold Heading Steel Continuous Casting Billet during Hot Compress Deformation[J]. Materials and Mechanical Engineering, 2012, 36(2): 83-87. |
[8] | ZHANG Wei-weii, ZHANG Wen-fei, LUO Jiaiig-yong, ZHENG Xiao-Ping. Constitutive Equation of 7075/6009 Aluminium Composite during Hot Compression[J]. Materials and Mechanical Engineering, 2011, 35(8): 93-96. |
[9] | QUAN Guo-zheng, LIU Ke-wei, WANG Feng-biao, SONG Tao, ZHOU Yi-jun. Constitutive Model of Dynamic Softening Behavior of 7075 Aluminum Alloy during Hot Compression[J]. Materials and Mechanical Engineering, 2010, 34(10): 82-86. |
[10] | CAI Yi-ming, LI Hui-zhong, LIANG Xiao-peng, TANG Guo-jian. Thermal Compression Deformation Constitutive Equation of 7039 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2009, 33(7): 48-51. |