• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LIU Xiao-yan, ZHAO Xi-cheng, YANG Xi-rong, ZHANG Kai, XIE Chen. Effect of Strain Rate on Tensile Properties of Commercial Pure Titanium Processed by ECAP at Room Temperature with a 90° Die[J]. Materials and Mechanical Engineering, 2013, 37(8): 5-8.
Citation: LIU Xiao-yan, ZHAO Xi-cheng, YANG Xi-rong, ZHANG Kai, XIE Chen. Effect of Strain Rate on Tensile Properties of Commercial Pure Titanium Processed by ECAP at Room Temperature with a 90° Die[J]. Materials and Mechanical Engineering, 2013, 37(8): 5-8.

Effect of Strain Rate on Tensile Properties of Commercial Pure Titanium Processed by ECAP at Room Temperature with a 90° Die

More Information
  • Received Date: May 06, 2013
  • The uniaxial tensile test was applied to investigate the effect of strain rate (0.001 7, 0.01, 0.1 s-1) on the tensile properties and fractography of commercial pure titanium (CP-Ti) fabricated by equal channel angular pressing (ECAP)with one pass deformation at room temperature using a die of 90°. The results show as the strain rate rose from 0.001 7 s-1 to 0.1 s-1, elongation to fracture decreased from 17.9% to 14.9%, and ultimate tensile strength increased from 780 MPa to 926 MPa, and work hardening exponent reduced from 0.07 to 0.04. The fracture surface of CP-Ti exhibited tough fracture of dimple, and dimple became shallow with the increase of strain rate.
  • [1]
    LATYSH V V, KRALLICS G, ALEXANDROV I V, et al. Application of bulk nanostructured materials in medicine[J].Curr Appl Phys, 2006, 6(2): 226-266.
    [2]
    ZHERNAKOV V S, LATYSH V V, STOLYAROV V V, et al. The developing of nanostructured SPD Ti for structural use[J].Scr Mater, 2001, 44(8/9): 1771-1774.
    [3]
    TORRE F D, LAPOVOK R, SANDLIN J, et al. Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes[J].Acta Mater, 2004, 52(16): 4819-4832.
    [4]
    VALIEV R Z, ALEXANDROV I V, ZHU Y T, et al. Paradox of strength and ductility in metals processed by severe plastic deformation[J].J Mater Res, 2002, 17(1): 5-8.
    [5]
    STOLYAROV V V, ZHU Y T, LOWE T C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion[J].Mater Scie Eng A, 2001, 303(1/2): 82-89.
    [6]
    STOLYAROV V V, ZHU Y T, ALEXANDROV I V, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J].Mater Scie Eng A, 2003, 343(1/2): 43-50.
    [7]
    ZHU Y T, KOBOLOV Y R, GRABOVETSKAYA G P, et al. Microstructures and mechanical properties of ultrafine grained Ti foil processed by equal-channel angular pressing and cold rolling[J].J Mater Res, 2003, 18: 1011-1016.
    [8]
    KIM I, KIM J, SHIN D H, et al. Effects of grain size and pressing speed on the deformation mode of commercially pure Ti during equal channel angular pressing[J].Metall Mater Trans A, 2003, 34 (7): 1555-1558.
    [9]
    STOLYAROV V V, ZEIPPER L, MINGLER B, et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing[J].Mater Scie Eng A, 2008, 476(1/2): 98-105.
    [10]
    CHEN Y J, LI Y J, WALMSLEY J C, et al. Microstructure evolution of commercial pure titanium during equal channel angular pressing[J].Mater Scie Eng A, 2010, 527(3): 789-796.
    [11]
    KANG D H, KIM T W. Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multi-pass equal channel angular pressing and cold extrusion[J].Materials & Design, 2010, 31: 54-60.
    [12]
    SABIROV I, PEREZ-PRADO M T , MOLINA-ALDAREGUIA J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J].Scr Mater, 2011, 64(1): 69-72.
    [13]
    ZHAO X C, FU W J, YANG X R, et al. Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature[J].Scr Mater, 2008, 59(5): 542-545.
    [14]
    ZHAO X C, YANG X R, LIU X Y, et al. The processing of pure titanium through multiple passes of ECAP at room temperature[J].Mater Scie Eng A, 2010, 527(23): 6335-6339.
    [15]
    ZHANG Y, FIGUEIREDO R B, ALHAJERI S N, et al. Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature[J].Mater Scie Eng A, 2011, 528(25/26): 7708-7714
    [16]
    DHEDA S S, MOHAMED F A. Effect of initial microstructure on the processing of titanium using equal channel angular pressing[J].Mater Scie Eng A, 2011, 528(28): 8179-8186.
    [17]
    赵西成, 王幸运, 杨西荣, 等. 120模具室温8道次ECAP变形TA1纯钛的组织与性能[J].金属材料与工程, 2011, 40(1): 28-31.
    [18]
    付文杰, 赵西成, 杨西荣, 等.室温ECAP和冷轧复合变形工业纯钛的组织和性能[J].材料研究学报, 2008, 22(3): 303-306.
    [19]
    杨西荣, 赵西成, 付文杰.变形方式对工业纯钛室温ECAP组织及性能影响[J].稀有金属材料与工程, 2009, 38(11): 1910-1915.
    [20]
    JIA D, WANG Y M, RAMESH KT, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium[J].Appl Phys Lett, 2001, 79 (5): 611-613.
    [21]
    IWAHASHI Y, WANG J T, HORITA Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J].Scr Mater, 1996, 35 (2): 143-146.
    [22]
    束德林. 工程材料力学性能[M].北京: 机械工业出版社, 2003.
    [23]
    谭树青, 王经涛.金属塑性加工物理基础[M].西安: 陕西科学技术出版社, 1996.
    [24]
    杨觉先.金属塑性变形物理基础[M].北京: 冶金工业出版社, 1988.
    [25]
    吴全兴, 曾泉浦, 张小明, 等.钛加工技术[R].西安: 西北有色金属研究院, 1997.
    [26]
    PARK K T, SHIN D H. Microstructural interpretation of negligible strain-hardening behavior of submicrometer- grained low-carbon steel during tensile deformation[J].Metall Mater Trans A, 2002, 33(3): 705-707.
    [27]
    LOJKOWSKI W. On the Spreading of grain boundary dislocations and its effect on grain boundary properties[J].Acta Metall Mater, 1991, 39(8): 1891-1899.
    [28]
    KO Y G, SHIN D H, PARK K T, et al. An analysis of the strain hardening behavior of ultra-fine grain pure titanium[J].Scr Mater, 2006, 54(10): 1785-1789.
  • Related Articles

    [1]YANG Xiaohui, LI Xingdong, ZHANG Fan, YUE Caixu, LI Haixia. Effect of Heat Treatment on Reverted Austenite Content of 04Cr13Ni8Mo2Al Steel[J]. Materials and Mechanical Engineering, 2018, 42(7): 23-27. DOI: 10.11973/jxgccl201807005
    [2]CHEN Yeqing, WU Yiwen, QIN Ziwei, ZHOU Xiao, WANG Hongbin. Effect of Deep Cryogenic Treatment on Microstructure and Mechanical Properties of GCr15 Bearing Steel[J]. Materials and Mechanical Engineering, 2018, 42(5): 55-58,62. DOI: 10.11973/jxgccl201805011
    [3]CAO Ying, SUN Xiuhua, LU Wei. Influence of Heat Treatment on Microstructure and Hardness of Cr12W Steel[J]. Materials and Mechanical Engineering, 2017, 41(Z2): 85-88.
    [4]XU Wenhui, XU Guifang, LUO Rui, WU Xiaodong, CHENG Xiaonong. Low-Temperature Impact Property of 0Cr17Mn17Mo3NiN Austenitic Stainless Steel after Cryogenic Treatment[J]. Materials and Mechanical Engineering, 2017, 41(5): 27-31. DOI: 10.11973/jxgccl201705006
    [5]CHEN Bing-chuan, LI Guang-fu, YANG Wu. Conversion Relation of Leeb-hardness,Vickers-hardness and Strength of Austenitic Stainless Steels[J]. Materials and Mechanical Engineering, 2009, 33(9): 37-40.
    [6]LI Ping, DU Zhong-ze, FU Han-guang, FENG Zhen-jun. Effect of Heat Treatment Temperature on Microstructure and Hardness of High Vanadium High Speed Steel[J]. Materials and Mechanical Engineering, 2009, 33(6): 93-95.
    [7]BAO Jun-cheng, WANG Zhi-qi, ZHAO Jie, MA Xu. Hardness Decreasing Reason of Airscrew Bush Parts of Helicopter after Heat Treatment[J]. Materials and Mechanical Engineering, 2009, 33(2): 89-91.
    [8]TIAN Xu-hai, QI Xiang-qian. Effect of Heat Treatment on Microstructure and Hardness of T122 Steel Welding Joint[J]. Materials and Mechanical Engineering, 2008, 32(5): 20-22.
    [9]SONG Dong-li, JIAO Si-hai. Validation of Hardness Prediction Mathematic Models[J]. Materials and Mechanical Engineering, 2008, 32(3): 29-31.
    [10]XU Chong-long, CHEN Jiu-bang, WANG Yong-zheng. Influence of Heat Teatment on Hardness of Cu-Zn-Cr Alloys[J]. Materials and Mechanical Engineering, 2007, 31(2): 43-45.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return