Page 111 - 机械工程材料2025年第三期
P. 111
牛化昶,等:不同含氢环境下X80管线钢的慢应变速率拉伸性能
temperature threshold of hydrogen embrittlement in X90 the hydrogen embrittlement of X80 pipeline steel[J].
pipeline steel[J]. Materials Science and Engineering: International Journal of Hydrogen Energy,2019,44(40):
A,2021,800:140118. 22547-22558.
[2] 原佳强,王莉萍. 不同电化学充氢状态下X70和X80管 [11] 李守英,胡瑞松,赵卫民,等. 氢在钢铁表面吸附以及
线钢的断裂特性[J]. 金属热处理,2015,40(12):56- 扩散的研究现状[J]. 表面技术,2020,49(8):15-21.
58. LI S Y,HU R S,ZHAO W M,et al. Hydrogen
YUAN J Q,WANG L P.Fracture characteristics adsorption and diffusion on steel surface[J]. Surface
of X70 and X80 pipeline steels under different Technology,2020,49(8):15-21.
electrochemical hydrogen charging state[J]. Heat [12] POUND B G. The application of a diffusion/trapping
Treatment of Metals,2015,40(12):56-58. model for hydrogen ingress in high-strength alloys[J].
[3] TAKAKUWA O,OGAWA Y,OKAZAKI S,et al. Corrosion,1989,45(1):18-25.
A mechanism behind hydrogen-assisted fatigue crack [13] MORO I,BRIOTTET L,LEMOINE P,et al.
growth in ferrite-pearlite steel focusing on its behavior Hydrogen embrittlement susceptibility of a high strength
in gaseous environment at elevated temperature[J]. steel X80[J]. Materials Science and Engineering:A,
Corrosion Science,2020,168:108558. 2010,527(27/28):7252-7260.
[4] DAS B,SINGH A. Influence of hydrogen on the low [14] TAKASAWA K,IKEDA R,ISHIKAWA N,et
cycle fatigue performance of P91 steel[J]. International al. Effects of grain size and dislocation density on the
Journal of Hydrogen Energy,2020,45(11):7151-7168. susceptibility to high-pressure hydrogen environment
[5] 褚武扬. 氢脆和应力腐蚀-典型体系[M]. 北京:科学 embrittlement of high-strength low-alloy steels[J].
出版社,2013. International Journal of Hydrogen Energy,2012,37(3):
CHU W Y. Hydrogen embrittlement and stress 2669-2675.
corrosion-typical system[M]. Beijing:Science Press, [15] ZHOU C S,HE Y M,JIANG J H,et al. Hydrogen
2013. uptake induced by CO 2 enhances hydrogen embrittlement
[6] 范裕文,吴明,陈旭,等. 管线钢氢致开裂研究现 of iron in hydrogen blended natural gas[J]. Corrosion
状[J]. 热加工工艺,2017,46(4):48-53. Science,2022,207:110594.
FAN Y W,WU M,CHEN X,et al.Research progress [16] ZHU W H,SUN D X,XIE F,et al. Effects of corrosion
of hydrogen-induced cracking for pipeline steel[J]. Hot defect growth on submarine pipeline under operating
Working Technology,2017,46(4):48-53. pressure and axial displacement[J]. Ocean Engineering,
[7] ASANUMA Y,MORI Y,MATSUNAGA H,et al. 2023,267:113297.
Behavior of initiation and growth of micro-cracks in [17] SAKONDER C,XUE L,PAREDES M,et al.
SSRT test of austenitic stainless steel in high-pressure Directional dependence of critical axial strain in X65
hydrogen gas[J]. The Proceedings of Mechanical pipeline steel subject to combined internal pressure and
Engineering Congress,Japan,2016,2016:S0310303. bending loading[J]. International Journal of Pressure
[8] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海 Vessels and Piping,2022,196:104610.
条件下氢脆敏感性的影响[J]. 金属学报,2013,49(9): [18] 张海,李少坡,丁文华,等. 显微组织与晶体学织构对
1089-1097. X80管线钢拉伸强度各向异性的影响 [J]. 金属热处理,
LIU Y,LI Y,LI Q. Effect of cathodic polarization on 2018,43(2):68-71.
hydrogen embrittlement susceptibility of X80 pipeline ZHANG H,LI S P,DING W H,et al. Effects of
steel in simulated deep sea environment[J]. Acta microstructure and crystallographic texture on anisotropy
Metallurgica Sinica,2013,49(9):1089-1097. of tensile strength of X80 pipeline steel[J]. Heat
[9] GADALA I M,ALFANTAZI A. Low alloy X100 Treatment of Metals,2018,43(2):68-71.
pipeline steel corrosion and passivation behavior in [19] ZHANG D,ZHU H H,ZHANG C,et al. Crack
bicarbonate-based solutions of pH 6.7 to 8.9 with initiation and propagation of defects adjacent to the
groundwater anions:An electrochemical study[J]. X65 pipeline spiral weld under axial tensile force[J].
Metallurgical and Materials Transactions A,2015,46(7): International Journal of Pressure Vessels and Piping,
3104-3116. 2022,200:104814.
[10] ZHOU C S,YE B G,SONG Y Y,et al. Effects of [20] 孙颖昊,程玉峰. 高强管线钢焊缝区氢损伤研究与展
internal hydrogen and surface-absorbed hydrogen on 望[J]. 石油管材与仪器,2021,7(6):1-13.
103

