Citation: | ZHANG Fei, ZHAO Yuncai. Influence of Ultrasonic Surface Rolling Processing on Tribological Performance of 45 Steel and Its Mechanism[J]. Materials and Mechanical Engineering, 2017, 41(8): 44-48. DOI: 10.11973/jxgccl201708010 |
[1] |
屈晓斌,陈建敏,周惠娣,等.材料的磨损失效及其预防研究与发展趋势[J].摩擦学学报,1999,19(2):182-192.
|
[2] |
张剑锋,周志芳.摩擦磨损与抗磨技术[M].天津:天津科技翻译出版公司,1993.
|
[3] |
WANG T,WANG D P, LIU G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing[J].Applied Surface Science,2008,255(5):1824-1829.
|
[4] |
李金桂.表面工程学研究[J].表面技术,1996,25(6):1-6.
|
[5] |
DAI K, SHAW L. Analysis of fatigue resistance improvements via surface severe plastic deformation[J].International Journal of Fatigue,2008,30(8):1398-1408.
|
[6] |
BAIUSAMY T, KUMAR S, NARAYANAN T S N S. Effect of surface nanocrystallization on the corrosion behavior of AISI409 stainless steel[J].Corrosion Science,2010,52(11):3826-3834.
|
[7] |
GOU B L,JIE C D, LIN G. Friction and wear behaviors of nanocrystalline surface layer of medium carbon steel[J].Tribology International,2010,43(11):2216-2221.
|
[8] |
梁健,岳文,孙建华,等. 超声表面滚压处理铝合金钻杆的高温摩擦学性能[J].中国表面工程,2016,29(5):129-137.
|
[9] |
陆晓峰,廖明刚,朱晓磊,等. 表面纳米化处理对Cr5Mo钢流动加速腐蚀性能的影响[J].机械工程材料,2014,38(5):66-70.
|
[10] |
宋宁霞.超声金属表面纳米化及摩擦磨损性能研究[D]. 天津:天津大学,2007.
|
[11] |
AHN D, HE Y, WAN Z, et al. Effect of ultrasonic nanocrystalline surface modification on the microstructural evolution and mechanical properties of Al5052 alloy[J]. Surface & Interface Analysis, 2012, 44(11/12):1415-1417.
|
[12] |
王伟.超声表面纳米化对低合金钢摩擦磨损性能研究[D].青岛:中国石油大学,2011.
|
[13] |
王炳英,尹宇,侯振波,等. X80钢超声表面滚压加工残余应力场的有限元模拟[J].机械工程材料,2015,39(9):80-83.
|
[14] |
刘洁.超声滚压加工对改善金属表面性能的研究[D].青岛:青岛科技大学,2013.
|
[15] |
陈心淇. 表面粗糙度对零件耐磨性能的影响[J].计量与测试技术,2005,32(7):7-8.
|
[16] |
WU X, TAO N, HONG Y, et al. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8):2075-2084.
|
[17] |
路军,靳丽,曾小勤,等.大塑性变形材料及变形机制研究进展[J].铸造工程,2008(1):32-36.
|
[18] |
LIU G, LU J, LU K. Surface nanocorystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science and Engineering A,2000,286:91-95.
|
[19] |
TAO N R, WANG Z B, TONG W P, et al. An investigation of surface nanocrystallization on mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002,50(18):4603-4616.
|
[20] |
HUANG J Y, ZHU Y T, JIANG H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001,49(9):1497-1505.
|
[21] |
MARA N A, SERGUEEVA A V, MARA T D,et al. Super-plasticity and cooperative grain boundary sliding in nanocrystalline Ni3Al[J].Materials Science and Engineering A,2007,463:238-244.
|
[22] |
赵新,高聿为,南云,等.制备块体纳米/超细晶材料的大塑性变形技术[J].材料导报,2003,17(12):5-8.
|
[23] |
ZHANG Y S, HAN Z, WANG K, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper[J]. Wear, 2006, 260(9/10):942-948.
|
[1] | ZHENG Zhangli, WANG Wendong, WANG Fei. Effect of Surface Roughness on Friction and Wear Properties of SA508 Cr.3 Cl.1 Steel-Graphite Friction Pairs[J]. Materials and Mechanical Engineering, 2024, 48(6): 26-32. DOI: 10.11973/jxgccl240063 |
[2] | WANG Qionglin. Effect of Laser Energy on Friction and Wear Properties of Laser Shock Peened 45 Steel[J]. Materials and Mechanical Engineering, 2023, 47(11): 57-61. DOI: 10.11973/jxgccl202311010 |
[3] | ZHOU Rui, HAN Wenjing, SHI Weiwei, LI Guosheng, LIU Shuai. Friction and Wear Performance of Carbon Ceramic Composite[J]. Materials and Mechanical Engineering, 2022, 46(3): 57-62. DOI: 10.11973/jxgccl202203010 |
[4] | WANG Mingxing, JIAO Jinan, YANG Lei, XIA Zhiyuan, LI Kun, PENG Jinfang. Effect of Friction Condition on Friction Coefficient Between Pole ShoeMaterial of Magnetic Rail Brake and Rail Material[J]. Materials and Mechanical Engineering, 2022, 46(1): 85-90. DOI: 10.11973/jxgccl202201014 |
[5] | ZHU Xinbo, CHEN Jianjun, PAN Hongliang, WANG Zhengdong. Rolling Friction and Wear Behavior of Polyurethane/Q235 Steel Pair[J]. Materials and Mechanical Engineering, 2017, 41(9): 101-105. DOI: 10.11973/jxgccl201709020 |
[6] | WANG Jian, LU De-hong, HE Xiao-gang, JIANG Ye-hua. Friction and Wear Properties of Ti-activated Preform Al2O3p/45 Steel Matrix Composite[J]. Materials and Mechanical Engineering, 2015, 39(1): 77-81. |
[7] | ZHANG Zhi-yuan, DU San-ming, ZHANG Yong-zhen, KANG Ke-jia. Friction and Wear Properties of PTFE Braided Composites under High-speed Condition[J]. Materials and Mechanical Engineering, 2014, 38(4): 46-49. |
[8] | GUO Jing, WANG Wen-jian, LIU Qi-yue, ZHOU Zhong-rong. Friction and Wear Behavior of Wheel/Rail Materials under Different Working Conditions[J]. Materials and Mechanical Engineering, 2013, 37(1): 43-46. |
[9] | JIANG Wen-juan, ZHONG Wen, ZHANG Xiang-long, GUO-Jun, LIU Qi-yue. The Effect of Rail Hardness on Wear Loss of Wheel-Rail System at Different Axle Loads[J]. Materials and Mechanical Engineering, 2011, 35(6): 80-82. |
[10] | WANG Xia, TIAN Long. Friction and Wear Characteristics of 38CrSi Alloy under Self-pair Rubbing Conditions[J]. Materials and Mechanical Engineering, 2008, 32(11): 50-52. |