Citation: | ZHU Jinqun, AN Chunxiang, LU Yixin, ZHU Mingliang, XUAN Fuzhen. Research Progress on Effect of γ' Phase on Strength, Fatigue and Creep Properties of Nickel-Based Superalloys[J]. Materials and Mechanical Engineering, 2023, 47(6): 1-7,71. DOI: 10.11973/jxgccl202306001 |
[1] |
姚进军,高联科,邓斌.镍基高温合金的技术进展[J].新材料产业,2015(12):43-46.
YAO J J,GAO L K,DENG B.Technical progress of nickel-based superalloys[J].Advanced Materials Industry,2015(12):43-46.
|
[2] |
姜珊.Ni3Al基高温合金双相区和共晶区界面γ'相的析出与循环氧化行为研究[D].天津:河北工业大学,2019. JIANG S.Precipitation of γ' phase along dual phase area and eutectic area interface and cyclic oxidation behavior of Ni3Al-based superalloy[D].Tianjin:Hebei University of Technology,2019.
|
[3] |
MILLER M K,BABU S S,BURKE M G.Comparison of the phase compositions in Alloy 718 measured by atom probe tomography and predicted by thermodynamic calculations[J].Materials Science and Engineering:A,2002,327(1):84-88.
|
[4] |
轩福贞,朱明亮,王国彪.结构疲劳百年研究的回顾与展望[J].机械工程学报,2021,57(6):26-51.
XUAN F Z,ZHU M L,WANG G B.Retrospect and prospect on century-long research of structural fatigue[J].Journal of Mechanical Engineering,2021,57(6):26-51.
|
[5] |
SHIN K Y,KIM J H,TERNER M,et al.Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy[J].Materials Science and Engineering:A,2019,751:311-322.
|
[6] |
MUKHERJEE S,BARAT K,SIVAPRASAD S,et al.Elevated temperature low cycle fatigue behaviour of Haynes 282 and its correlation with microstructure:Effect of ageing conditions[J].Materials Science and Engineering:A,2019,762:138073.
|
[7] |
宋晓庆,唐丽英,陈铮.新型镍基高温合金Haynes 282的特点及应用[J].材料导报,2016,30(11):116-120.
SONG X Q,TANG L Y,CHEN Z.Characteristics and applications of a new Ni-based superalloy Haynes 282[J].Materials Review,2016,30(11):116-120.
|
[8] |
WANG W Z,HONG H U,KIM I S,et al.Influence of γ' and grain boundary carbide on tensile fracture behaviors of Nimonic 263[J].Materials Science and Engineering:A,2009,523(1/2):242-245.
|
[9] |
MACIEJEWSKI K,JOUIAD M,GHONEM H.Dislocation/precipitate interactions in IN100 at 650℃[J].Materials Science and Engineering:A,2013,582:47-54.
|
[10] |
GAYDA J,MINER R V.Fatigue crack initiation and propagation in several nickel-base superalloys at 650℃[J].International Journal of Fatigue,1983,5(3):135-143.
|
[11] |
EVERITT S,STARINK M J,PANG H T,et al.A comparison of high temperature fatigue crack propagation in various subsolvus heat treated turbine disc alloys[J].Materials Science and Technology,2007,23(12):1419-1423.
|
[12] |
BARAT K,GHOSH M,SIVAPRASAD S,et al.High-temperature low-cycle fatigue behavior in HAYNES 282:Influence of initial microstructure[J].Metallurgical and Materials Transactions A,2018,49(10):5211-5226.
|
[13] |
FENG Y F,ZHOU X M,ZOU J W,et al.Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96[J].International Journal of Minerals,Metallurgy,and Materials,2019,26(4):493-499.
|
[14] |
THÉBAUD L,VILLECHAISE P,CROZET C,et al.Is there an optimal grain size for creep resistance in Ni-based disk superalloys? [J].Materials Science and Engineering:A,2018,716:274-283.
|
[15] |
ABE F.Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700℃ and above[J].Engineering,2015,1(2):211-224.
|
[16] |
RAI R K,SAHU J K,DAS S K,et al.Creep-fatigue deformation micromechanisms of a directionally solidified nickel-base superalloy at 850℃[J].Fatigue & Fracture of Engineering Materials & Structures,2020,43(1):51-62.
|
[17] |
刘健,叶飞,王旭青,等.粉末高温合金Udimet720Li γ'强化相析出行为[J].粉末冶金技术,2021,39(6):499-504.
LIU J,YE F,WANG X Q,et al.Precipitation behavior of γ' phase in P/M superalloy Udimet720Li[J].Powder Metallurgy Technology,2021,39(6):499-504.
|
[18] |
TELESMAN J,GABB T P,GARG A,et al.Effect of microstructure on time dependent fatigue crack growth behavior in a P/M turbine disk alloy[C]//11th International Symposium Superalloys 2008.Warrendale, PA:TMS,2008:20080047674.
|
[19] |
PALMERT F,MOVERARE J,GUSTAFSSON D,et al.Fatigue crack growth behaviour of an alternative single crystal nickel base superalloy[J].International Journal of Fatigue,2018,109:166-181.
|
[20] |
WANG S A,WANG L,LIU Y,et al.Effect of long-term aging on the fatigue crack growth rate of a nickel-based superalloy[J].Materials Science and Engineering:A,2011,528(4/5):2110-2117.
|
[21] |
GAYDA J, MINER R V. The effect of microstructure on 650℃ fatigue crack growth in P/M astroloy[J]. Metallurgical Transactions A, 1983, 14(11): 2301-2308.
|
[22] |
JOSEPH C,PERSSON C,HÖRNQVIST COLLIANDER M.Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282[J].Materials Science and Engineering:A,2017,679:520-530.
|
[23] |
PANG H T,REED P A S.Microstructure variation effects on room temperature fatigue threshold and crack propagation in Udimet 720Li Ni-base superalloy[J].Fatigue & Fracture of Engineering Materials & Structures,2009,32(8):685-701.
|
[24] |
XIAO G F,JIANG J F,WANG Y,et al.Microstructure and mechanical properties of thixoformed GH4037 parts before and after heat treatment[J].Materials Science and Engineering:A,2021,815:141304.
|
[25] |
HU Y L,LIN X,LI Y L,et al.Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition[J].Journal of Alloys and Compounds,2019,800:163-173.
|
[26] |
DEL VALLE J A,PICASSO A C,ROMERO R.Work-hardening in Inconel X-750:Study of stage II[J].Acta Materialia,1998,46(6):1981-1988.
|
[27] |
SUN F,TONG J Y,FENG Q,et al.Microstructural evolution and deformation features in gas turbine blades operated in-service[J].Journal of Alloys and Compounds,2015,618:728-733.
|
[28] |
KOZAR R W,SUZUKI A,MILLIGAN W W,et al.Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys[J].Metallurgical and Materials Transactions A,2009,40(7):1588-1603.
|
[29] |
DU B N,YANG J X,CUI C Y,et al.Effects of grain refinement on the microstructure and tensile behavior of K417G superalloy[J].Materials Science and Engineering:A,2015,623:59-67.
|
[30] |
HUTHER W,REPPICH B.Interaction of dislocations with coherent,stress-free,ordered particles[J].International Journal of Materials Research,1978,69(10):628-634.
|
[31] |
PENG Z C,TIAN G F,JIANG J,et al.Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy[J].Materials Science and Engineering:A,2016,676:441-449.
|
[32] |
OH J H,CHOI I C,KIM Y J,et al.Variations in overall- and phase-hardness of a new Ni-based superalloy during isothermal aging[J].Materials Science and Engineering:A,2011,528(19/20):6121-6127.
|
[33] |
BUCKSON R A,OJO O A.Cyclic deformation characteristics and fatigue crack growth behaviour of a newly developed aerospace superalloy Haynes 282[J].Materials Science and Engineering:A,2012,555:63-70.
|
[34] |
KIM D,JIANG R,EVANGELOU A,et al.Effects of γ' size and carbide distribution on fatigue crack growth mechanisms at 650℃ in an advanced Ni-based superalloy[J].International Journal of Fatigue,2021,145:106086.
|
[35] |
侯坤磊. K4750镍基高温合金变形机制和η相析出行为研究[D]. 合肥:中国科学技术大学, 2022. HOU K L, The deformation mechanism and η precipitation behavior of K4750 Ni-based superalloy[D]. Hefei:University of Science and Technology of China, 2022.
|
[36] |
PANG H T,REED P A S.Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J].International Journal of Fatigue,2008,30(10/11):2009-2020.
|
[37] |
PANWAR S,SUNDARARAGHAVAN V.Dislocation theory-based cohesive model for microstructurally short fatigue crack growth[J].Materials Science and Engineering:A,2017,708:395-404.
|
[38] |
吴圣川,李存海,张文,等.金属材料疲劳裂纹扩展机制及模型的研究进展[J].固体力学学报,2019,40(6):489-538.
WU S C,LI C H,ZHANG W,et al.Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J].Chinese Journal of Solid Mechanics,2019,40(6):489-538.
|
[39] |
HAWK J A,CHENG T L,SEARS J S,et al.Gamma prime stability in Haynes 282:Theoretical and experimental considerations[J].Journal of Materials Engineering and Performance,2015,24(11):4171-4181.
|
[40] |
DING B,REN W L,ZHONG Y B,et al.Analysis of the fully-reversed creep-fatigue behavior with tensile-dwell periods of superalloy DZ445 at 900℃[J].Engineering Fracture Mechanics,2021,250:107781.
|
[41] |
WANG L,WANG S,SONG X,et al.Effects of precipitated phases on the crack propagation behaviour of a Ni-based superalloy[J].International Journal of Fatigue,2014,62:210-216.
|
[42] |
佴启亮,董建新,张麦仓,等.GH4720Li合金疲劳裂纹扩展速率的温度敏感性[J].稀有金属材料与工程,2017,46(10):2915-2921.
NAI Q L,DONG J X,ZHANG M C,et al.Temperature sensitivity of fatigue crack growth rate for GH4720Li alloy[J].Rare Metal Materials and Engineering,2017,46(10):2915-2921.
|
[43] |
LIAW P K,SAXENA A,SWAMINATHAN V P,et al.Effects of load ratio and temperature on the near-threshold fatigue crack propagation behavior in a CrMoV steel[J].Metallurgical Transactions A,1983,14(8):1631-1640.
|
[44] |
RITCHIE R O, SURESH S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology[J]. Metallurgical Transactions A, 1982, 13(5):937-940.
|
[45] |
朱明亮,轩福贞,朱奎龙,等.热处理对25Cr2NiMo1V钢疲劳特性的影响[J].金属学报,2009,45(3):320-325.
ZHU M L,XUAN F Z,ZHU K L,et al.Effect of heat treatment on fatigue behavior of 25Cr2NiMo1V steel[J].Acta Metallurgica Sinica,2009,45(3):320-325.
|
[46] |
WANG Z,WU W W,LIANG J C,et al.Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in situ SEM observation[J].International Journal of Fatigue,2020,141:105879.
|
[47] |
LUO L,RU Y,MA Y,et al.Design for 1200℃ creep properties of Ni-based single crystal superalloys:Effect of γ'-forming elements and its microscopic mechanism[J].Materials Science and Engineering:A,2022,832:142494.
|
[48] |
谢君,田素贵,刘姣,等.FGH95粉末镍基合金蠕变期间位错网的形成与分析[J].金属学报,2013,49(7):838-844.
XIE J,TIAN S G,LIU J,et al.Formation and analysis of dislocationnetwork of FGH95 powder metallurgy Ni-based superalloy during creep[J].Acta Metallurgica Sinica,2013,49(7):838-844.
|
[49] |
WANG G Y,ZHANG S,TIAN S G,et al.Microstructure evolution and deformation mechanism of a
|
[50] |
PENG Z C,ZOU J W,YANG J,et al.Influence of γ' precipitate on deformation and fracture during creep in PM nickel-based superalloy[J].Progress in Natural Science:Materials International,2021,31(2):303-309.
|
[51] |
ZHANG J X,KOIZUMI Y,KOBAYASHI T,et al.Strengthening by γ/γ' interfacial dislocation networks in TMS-162:Toward a fifth-generation single-crystal superalloy[J].Metallurgical and Materials Transactions,2004,35(6):1911-1914.
|
[52] |
彭涛.700℃汽轮机叶片用Nimonic 105合金的组织及性能研究[D].北京:北京科技大学,2021.
PENG T.Investigation on microstructure and mechanical properties of Nimonic 105 alloy for 700℃ steam turbine blade[D].Beijing:University of Science and Technology Beijing,2021.
|
[53] |
TORSTER F,BAUMEISTER G,ALBRECHT J,et al.Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U720Li[J].Materials Science and Engineering:A,1997,234/235/236:189-192.
|
[54] |
BHOWAL P R,WRIGHT E F,RAYMOND E L.Effects of cooling rate and γ' morphology on creep and stress-rupture properties of a powder metallurgy superalloy[J].Metallurgical Transactions A,1990,21(6):1709-1717.
|
[55] |
POLLOCK T M,ARGON A S.Creep resistance of CMSX-3 nickel base superalloy single crystals[J].Acta Metallurgica et Materialia,1992,40(1):1-30.
|
[56] |
ORUGANTI R,SHUKLA A,NALAWADE S,et al.A microstructure-based model for creep of gamma prime strengthened nickel-based superalloys[J].Journal of Engineering Materials and Technology,2019,141(1):011001.
|
[57] |
MURAKUMO T,KOBAYASHI T,KOIZUMI Y,et al.Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction[J].Acta Materialia,2004,52(12):3737-3744.
|
[58] |
MAZUR Z,LUNA-RAMÍREZ A,JUÁREZ-ISLAS J A,et al.Failure analysis of a gas turbine blade made of Inconel 738LC alloy[J].Engineering Failure Analysis,2005,12(3):474-486.
|
[59] |
NATHAL M V.Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys[J].Metallurgical Transactions A,1987,18(11):1961-1970.
|
[111] |
-oriented nickel-based single-crystal superalloy during high-temperature creep[J].Journal of Materials Research and Technology,2022,16:495-504.
|
[1] | ZHANG Jin, HUANG Yuntao, YUE Xinyan, ZHANG Cuiping, RU Hongqiang. Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites[J]. Materials and Mechanical Engineering, 2023, 47(1): 70-75. DOI: 10.11973/jxgccl202301010 |
[2] | LIU Gui-min, LI Bin, YAN Tao, ZHENG Xiao-hui, DING Hua-dong. Microstructure and Properties of Al2O3/Cu Composite Prepared by Reaction Milling Following Sintering[J]. Materials and Mechanical Engineering, 2015, 39(1): 63-67. |
[3] | QIAN Jun. Microwave Dielectric Properties of Ceria Composite Lanthanum Sodium Titanate Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2013, 37(3): 73-76. |
[4] | ZHANG Jian-zhu, ZHAO Jie, LU Cui-min, WU Yu-qiang, MA Yong-chang, LIU Qing-suo. Effect of Vacuum Annealing on the Dielectric Properties of La1.5Sr0.5NiO4-δ Ceramic[J]. Materials and Mechanical Engineering, 2011, 35(11): 69-72. |
[5] | LEI Shen-Hui, ZHENG Xing-hua, TANG De-ping, LIN Jia. xStructure and Dielectric Properties of xSrTiO3-(1-x)LaAlO3 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2011, 35(10): 84-87. |
[6] | XU Peng, CHEN Xing, YANG Jian, QIU Tai. Effect of Sintering Additive La2O3 Content on Properties of Si3N |
[7] | WANG Ji-dong. Effect of Temperature on Thermal Conductivity of CuTeSeFe Alloy[J]. Materials and Mechanical Engineering, 2009, 33(4): 26-28. |
[8] | LIU Teng-bin, WANG Ze-hua, FANG Xue-feng, LIN Ping-hua, SHEN Guo-jun, LU Jie. Thermal Shock Resistance of Plasma Sprayed Al2O3-TiO2/NiCoCrAlY Coatings on Aluminum Substrate[J]. Materials and Mechanical Engineering, 2006, 30(12): 19-22. |
[9] | WANG Ru-yu, HUANG Jin-liang, ZHOU Huan-fu, YIN Biao, ZHAO Gao-lei. Effect of V2O5 Addition on Properties of ZnNb2O6 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(5): 66-68. |
[10] | SI Min-jie, LI Qian, HUANG Jin-liang. Structure and Dielectric Properties of (Ba1-ySry)6-3xSm8+2xTi18O54 Microwave Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(1): 46-49. |