• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHU Jinqun, AN Chunxiang, LU Yixin, ZHU Mingliang, XUAN Fuzhen. Research Progress on Effect of γ' Phase on Strength, Fatigue and Creep Properties of Nickel-Based Superalloys[J]. Materials and Mechanical Engineering, 2023, 47(6): 1-7,71. DOI: 10.11973/jxgccl202306001
Citation: ZHU Jinqun, AN Chunxiang, LU Yixin, ZHU Mingliang, XUAN Fuzhen. Research Progress on Effect of γ' Phase on Strength, Fatigue and Creep Properties of Nickel-Based Superalloys[J]. Materials and Mechanical Engineering, 2023, 47(6): 1-7,71. DOI: 10.11973/jxgccl202306001

Research Progress on Effect of γ' Phase on Strength, Fatigue and Creep Properties of Nickel-Based Superalloys

More Information
  • Received Date: August 31, 2022
  • Revised Date: May 15, 2023
  • Nickel-based superalloys have good fatigue and creep properties due to their unique γ' phase, and have wide application in aerospace and high-parameter power generation industries. The effect of γ' phase on the strengthening behavior of nickel-based superalloys from aspects of size and content of γ' phase and dislocation strengthening, and the strengthening mechanisms of interaction between dislocations and precipitates, including shear, Orowan bypass and climb, are described. The influence of γ' phase on fatigue and creep properties of nickel-based superalloys is discussed. Finally, the optimization of γ' phase and associated performance control of nickel-based superalloys are prospected.
  • [1]
    姚进军,高联科,邓斌.镍基高温合金的技术进展[J].新材料产业,2015(12):43-46.

    YAO J J,GAO L K,DENG B.Technical progress of nickel-based superalloys[J].Advanced Materials Industry,2015(12):43-46.
    [2]
    姜珊.Ni3Al基高温合金双相区和共晶区界面γ'相的析出与循环氧化行为研究[D].天津:河北工业大学,2019. JIANG S.Precipitation of γ' phase along dual phase area and eutectic area interface and cyclic oxidation behavior of Ni3Al-based superalloy[D].Tianjin:Hebei University of Technology,2019.
    [3]
    MILLER M K,BABU S S,BURKE M G.Comparison of the phase compositions in Alloy 718 measured by atom probe tomography and predicted by thermodynamic calculations[J].Materials Science and Engineering:A,2002,327(1):84-88.
    [4]
    轩福贞,朱明亮,王国彪.结构疲劳百年研究的回顾与展望[J].机械工程学报,2021,57(6):26-51.

    XUAN F Z,ZHU M L,WANG G B.Retrospect and prospect on century-long research of structural fatigue[J].Journal of Mechanical Engineering,2021,57(6):26-51.
    [5]
    SHIN K Y,KIM J H,TERNER M,et al.Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy[J].Materials Science and Engineering:A,2019,751:311-322.
    [6]
    MUKHERJEE S,BARAT K,SIVAPRASAD S,et al.Elevated temperature low cycle fatigue behaviour of Haynes 282 and its correlation with microstructure:Effect of ageing conditions[J].Materials Science and Engineering:A,2019,762:138073.
    [7]
    宋晓庆,唐丽英,陈铮.新型镍基高温合金Haynes 282的特点及应用[J].材料导报,2016,30(11):116-120.

    SONG X Q,TANG L Y,CHEN Z.Characteristics and applications of a new Ni-based superalloy Haynes 282[J].Materials Review,2016,30(11):116-120.
    [8]
    WANG W Z,HONG H U,KIM I S,et al.Influence of γ' and grain boundary carbide on tensile fracture behaviors of Nimonic 263[J].Materials Science and Engineering:A,2009,523(1/2):242-245.
    [9]
    MACIEJEWSKI K,JOUIAD M,GHONEM H.Dislocation/precipitate interactions in IN100 at 650℃[J].Materials Science and Engineering:A,2013,582:47-54.
    [10]
    GAYDA J,MINER R V.Fatigue crack initiation and propagation in several nickel-base superalloys at 650℃[J].International Journal of Fatigue,1983,5(3):135-143.
    [11]
    EVERITT S,STARINK M J,PANG H T,et al.A comparison of high temperature fatigue crack propagation in various subsolvus heat treated turbine disc alloys[J].Materials Science and Technology,2007,23(12):1419-1423.
    [12]
    BARAT K,GHOSH M,SIVAPRASAD S,et al.High-temperature low-cycle fatigue behavior in HAYNES 282:Influence of initial microstructure[J].Metallurgical and Materials Transactions A,2018,49(10):5211-5226.
    [13]
    FENG Y F,ZHOU X M,ZOU J W,et al.Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96[J].International Journal of Minerals,Metallurgy,and Materials,2019,26(4):493-499.
    [14]
    THÉBAUD L,VILLECHAISE P,CROZET C,et al.Is there an optimal grain size for creep resistance in Ni-based disk superalloys? [J].Materials Science and Engineering:A,2018,716:274-283.
    [15]
    ABE F.Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700℃ and above[J].Engineering,2015,1(2):211-224.
    [16]
    RAI R K,SAHU J K,DAS S K,et al.Creep-fatigue deformation micromechanisms of a directionally solidified nickel-base superalloy at 850℃[J].Fatigue & Fracture of Engineering Materials & Structures,2020,43(1):51-62.
    [17]
    刘健,叶飞,王旭青,等.粉末高温合金Udimet720Li γ'强化相析出行为[J].粉末冶金技术,2021,39(6):499-504.

    LIU J,YE F,WANG X Q,et al.Precipitation behavior of γ' phase in P/M superalloy Udimet720Li[J].Powder Metallurgy Technology,2021,39(6):499-504.
    [18]
    TELESMAN J,GABB T P,GARG A,et al.Effect of microstructure on time dependent fatigue crack growth behavior in a P/M turbine disk alloy[C]//11th International Symposium Superalloys 2008.Warrendale, PA:TMS,2008:20080047674.
    [19]
    PALMERT F,MOVERARE J,GUSTAFSSON D,et al.Fatigue crack growth behaviour of an alternative single crystal nickel base superalloy[J].International Journal of Fatigue,2018,109:166-181.
    [20]
    WANG S A,WANG L,LIU Y,et al.Effect of long-term aging on the fatigue crack growth rate of a nickel-based superalloy[J].Materials Science and Engineering:A,2011,528(4/5):2110-2117.
    [21]
    GAYDA J, MINER R V. The effect of microstructure on 650℃ fatigue crack growth in P/M astroloy[J]. Metallurgical Transactions A, 1983, 14(11): 2301-2308.
    [22]
    JOSEPH C,PERSSON C,HÖRNQVIST COLLIANDER M.Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282[J].Materials Science and Engineering:A,2017,679:520-530.
    [23]
    PANG H T,REED P A S.Microstructure variation effects on room temperature fatigue threshold and crack propagation in Udimet 720Li Ni-base superalloy[J].Fatigue & Fracture of Engineering Materials & Structures,2009,32(8):685-701.
    [24]
    XIAO G F,JIANG J F,WANG Y,et al.Microstructure and mechanical properties of thixoformed GH4037 parts before and after heat treatment[J].Materials Science and Engineering:A,2021,815:141304.
    [25]
    HU Y L,LIN X,LI Y L,et al.Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition[J].Journal of Alloys and Compounds,2019,800:163-173.
    [26]
    DEL VALLE J A,PICASSO A C,ROMERO R.Work-hardening in Inconel X-750:Study of stage II[J].Acta Materialia,1998,46(6):1981-1988.
    [27]
    SUN F,TONG J Y,FENG Q,et al.Microstructural evolution and deformation features in gas turbine blades operated in-service[J].Journal of Alloys and Compounds,2015,618:728-733.
    [28]
    KOZAR R W,SUZUKI A,MILLIGAN W W,et al.Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys[J].Metallurgical and Materials Transactions A,2009,40(7):1588-1603.
    [29]
    DU B N,YANG J X,CUI C Y,et al.Effects of grain refinement on the microstructure and tensile behavior of K417G superalloy[J].Materials Science and Engineering:A,2015,623:59-67.
    [30]
    HUTHER W,REPPICH B.Interaction of dislocations with coherent,stress-free,ordered particles[J].International Journal of Materials Research,1978,69(10):628-634.
    [31]
    PENG Z C,TIAN G F,JIANG J,et al.Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy[J].Materials Science and Engineering:A,2016,676:441-449.
    [32]
    OH J H,CHOI I C,KIM Y J,et al.Variations in overall- and phase-hardness of a new Ni-based superalloy during isothermal aging[J].Materials Science and Engineering:A,2011,528(19/20):6121-6127.
    [33]
    BUCKSON R A,OJO O A.Cyclic deformation characteristics and fatigue crack growth behaviour of a newly developed aerospace superalloy Haynes 282[J].Materials Science and Engineering:A,2012,555:63-70.
    [34]
    KIM D,JIANG R,EVANGELOU A,et al.Effects of γ' size and carbide distribution on fatigue crack growth mechanisms at 650℃ in an advanced Ni-based superalloy[J].International Journal of Fatigue,2021,145:106086.
    [35]
    侯坤磊. K4750镍基高温合金变形机制和η相析出行为研究[D]. 合肥:中国科学技术大学, 2022. HOU K L, The deformation mechanism and η precipitation behavior of K4750 Ni-based superalloy[D]. Hefei:University of Science and Technology of China, 2022.
    [36]
    PANG H T,REED P A S.Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J].International Journal of Fatigue,2008,30(10/11):2009-2020.
    [37]
    PANWAR S,SUNDARARAGHAVAN V.Dislocation theory-based cohesive model for microstructurally short fatigue crack growth[J].Materials Science and Engineering:A,2017,708:395-404.
    [38]
    吴圣川,李存海,张文,等.金属材料疲劳裂纹扩展机制及模型的研究进展[J].固体力学学报,2019,40(6):489-538.

    WU S C,LI C H,ZHANG W,et al.Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J].Chinese Journal of Solid Mechanics,2019,40(6):489-538.
    [39]
    HAWK J A,CHENG T L,SEARS J S,et al.Gamma prime stability in Haynes 282:Theoretical and experimental considerations[J].Journal of Materials Engineering and Performance,2015,24(11):4171-4181.
    [40]
    DING B,REN W L,ZHONG Y B,et al.Analysis of the fully-reversed creep-fatigue behavior with tensile-dwell periods of superalloy DZ445 at 900℃[J].Engineering Fracture Mechanics,2021,250:107781.
    [41]
    WANG L,WANG S,SONG X,et al.Effects of precipitated phases on the crack propagation behaviour of a Ni-based superalloy[J].International Journal of Fatigue,2014,62:210-216.
    [42]
    佴启亮,董建新,张麦仓,等.GH4720Li合金疲劳裂纹扩展速率的温度敏感性[J].稀有金属材料与工程,2017,46(10):2915-2921.

    NAI Q L,DONG J X,ZHANG M C,et al.Temperature sensitivity of fatigue crack growth rate for GH4720Li alloy[J].Rare Metal Materials and Engineering,2017,46(10):2915-2921.
    [43]
    LIAW P K,SAXENA A,SWAMINATHAN V P,et al.Effects of load ratio and temperature on the near-threshold fatigue crack propagation behavior in a CrMoV steel[J].Metallurgical Transactions A,1983,14(8):1631-1640.
    [44]
    RITCHIE R O, SURESH S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology[J]. Metallurgical Transactions A, 1982, 13(5):937-940.
    [45]
    朱明亮,轩福贞,朱奎龙,等.热处理对25Cr2NiMo1V钢疲劳特性的影响[J].金属学报,2009,45(3):320-325.

    ZHU M L,XUAN F Z,ZHU K L,et al.Effect of heat treatment on fatigue behavior of 25Cr2NiMo1V steel[J].Acta Metallurgica Sinica,2009,45(3):320-325.
    [46]
    WANG Z,WU W W,LIANG J C,et al.Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in situ SEM observation[J].International Journal of Fatigue,2020,141:105879.
    [47]
    LUO L,RU Y,MA Y,et al.Design for 1200℃ creep properties of Ni-based single crystal superalloys:Effect of γ'-forming elements and its microscopic mechanism[J].Materials Science and Engineering:A,2022,832:142494.
    [48]
    谢君,田素贵,刘姣,等.FGH95粉末镍基合金蠕变期间位错网的形成与分析[J].金属学报,2013,49(7):838-844.

    XIE J,TIAN S G,LIU J,et al.Formation and analysis of dislocationnetwork of FGH95 powder metallurgy Ni-based superalloy during creep[J].Acta Metallurgica Sinica,2013,49(7):838-844.
    [49]
    WANG G Y,ZHANG S,TIAN S G,et al.Microstructure evolution and deformation mechanism of a
    [50]
    PENG Z C,ZOU J W,YANG J,et al.Influence of γ' precipitate on deformation and fracture during creep in PM nickel-based superalloy[J].Progress in Natural Science:Materials International,2021,31(2):303-309.
    [51]
    ZHANG J X,KOIZUMI Y,KOBAYASHI T,et al.Strengthening by γ/γ' interfacial dislocation networks in TMS-162:Toward a fifth-generation single-crystal superalloy[J].Metallurgical and Materials Transactions,2004,35(6):1911-1914.
    [52]
    彭涛.700℃汽轮机叶片用Nimonic 105合金的组织及性能研究[D].北京:北京科技大学,2021.

    PENG T.Investigation on microstructure and mechanical properties of Nimonic 105 alloy for 700℃ steam turbine blade[D].Beijing:University of Science and Technology Beijing,2021.
    [53]
    TORSTER F,BAUMEISTER G,ALBRECHT J,et al.Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U720Li[J].Materials Science and Engineering:A,1997,234/235/236:189-192.
    [54]
    BHOWAL P R,WRIGHT E F,RAYMOND E L.Effects of cooling rate and γ' morphology on creep and stress-rupture properties of a powder metallurgy superalloy[J].Metallurgical Transactions A,1990,21(6):1709-1717.
    [55]
    POLLOCK T M,ARGON A S.Creep resistance of CMSX-3 nickel base superalloy single crystals[J].Acta Metallurgica et Materialia,1992,40(1):1-30.
    [56]
    ORUGANTI R,SHUKLA A,NALAWADE S,et al.A microstructure-based model for creep of gamma prime strengthened nickel-based superalloys[J].Journal of Engineering Materials and Technology,2019,141(1):011001.
    [57]
    MURAKUMO T,KOBAYASHI T,KOIZUMI Y,et al.Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction[J].Acta Materialia,2004,52(12):3737-3744.
    [58]
    MAZUR Z,LUNA-RAMÍREZ A,JUÁREZ-ISLAS J A,et al.Failure analysis of a gas turbine blade made of Inconel 738LC alloy[J].Engineering Failure Analysis,2005,12(3):474-486.
    [59]
    NATHAL M V.Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys[J].Metallurgical Transactions A,1987,18(11):1961-1970.
    [111]
    -oriented nickel-based single-crystal superalloy during high-temperature creep[J].Journal of Materials Research and Technology,2022,16:495-504.
  • Related Articles

    [1]ZHANG Jin, HUANG Yuntao, YUE Xinyan, ZHANG Cuiping, RU Hongqiang. Effect of TiC Content on Microstructure and Properties of Pressureless SinteredTiC-Al2O3 Conductive Ceramic Composites[J]. Materials and Mechanical Engineering, 2023, 47(1): 70-75. DOI: 10.11973/jxgccl202301010
    [2]LIU Gui-min, LI Bin, YAN Tao, ZHENG Xiao-hui, DING Hua-dong. Microstructure and Properties of Al2O3/Cu Composite Prepared by Reaction Milling Following Sintering[J]. Materials and Mechanical Engineering, 2015, 39(1): 63-67.
    [3]QIAN Jun. Microwave Dielectric Properties of Ceria Composite Lanthanum Sodium Titanate Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2013, 37(3): 73-76.
    [4]ZHANG Jian-zhu, ZHAO Jie, LU Cui-min, WU Yu-qiang, MA Yong-chang, LIU Qing-suo. Effect of Vacuum Annealing on the Dielectric Properties of La1.5Sr0.5NiO4-δ Ceramic[J]. Materials and Mechanical Engineering, 2011, 35(11): 69-72.
    [5]LEI Shen-Hui, ZHENG Xing-hua, TANG De-ping, LIN Jia. xStructure and Dielectric Properties of xSrTiO3-(1-x)LaAlO3 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2011, 35(10): 84-87.
    [6]XU Peng, CHEN Xing, YANG Jian, QIU Tai. Effect of Sintering Additive La2O3 Content on Properties of Si3N4-AlN Composite Ceramics Prepared by Hot-Pressing Sintering[J]. Materials and Mechanical Engineering, 2011, 35(1): 11-14.
    [7]WANG Ji-dong. Effect of Temperature on Thermal Conductivity of CuTeSeFe Alloy[J]. Materials and Mechanical Engineering, 2009, 33(4): 26-28.
    [8]LIU Teng-bin, WANG Ze-hua, FANG Xue-feng, LIN Ping-hua, SHEN Guo-jun, LU Jie. Thermal Shock Resistance of Plasma Sprayed Al2O3-TiO2/NiCoCrAlY Coatings on Aluminum Substrate[J]. Materials and Mechanical Engineering, 2006, 30(12): 19-22.
    [9]WANG Ru-yu, HUANG Jin-liang, ZHOU Huan-fu, YIN Biao, ZHAO Gao-lei. Effect of V2O5 Addition on Properties of ZnNb2O6 Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(5): 66-68.
    [10]SI Min-jie, LI Qian, HUANG Jin-liang. Structure and Dielectric Properties of (Ba1-ySry)6-3xSm8+2xTi18O54 Microwave Dielectric Ceramics[J]. Materials and Mechanical Engineering, 2006, 30(1): 46-49.

Catalog

    Article views (53) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return