Citation: | ZHANG Er-geng, TONG Sui-fang, WANG Qiong-qi, GUAN Kai-shu. Carbide Transition of 12Cr1MoV Pearlite Heat-resisting Steel in Long-term Service and It's Influence on Material Performance[J]. Materials and Mechanical Engineering, 2009, 33(9): 28-32. |
[1] |
ENNIS P J,ZIELINSKA A,WACHTER O,et al.Microtructural stabiilty and creep rupture strength of the martensitic steel P92 for advanced power plant[J].Acta Mater,1997,45(12):4901-4907.
|
[2] |
朱丽慧,赵钦新.10Cr9Mo1VNbN耐热钢的退化机理研究[J].机械工程材料,1999,23(1):6-8,26.
|
[3] |
史志刚,侯安柱.李益民,等.T91钢长期运行过程中微观组织老化研究[J].热力发电,2006(4):54-58.
|
[4] |
杨瑞成,王晖,郑丽平,等.12Cr1MoV钢高温时效过程中组织结构的演变[J].金属热处理,2002,27(9):18-21.
|
[5] |
DL 818-2002低合金耐热钢碳化物相分析技术导则[S].
|
[6] |
AR AS B,RIMANTAS L.XRD analysis of carbide phase in heat resistant steels[J].ISSN 1392-1320 Materials Science(MEDIAGOTYRA),2006,12(3):192-198.
|
[7] |
章燕谋.锅炉与压力容器用钢[M].西安:西安交通大学出版社,1984.
|
[8] |
肖文彬.非破坏性碳化物分析方法[J].新疆电力,2000(3):7-10.
|
[9] |
刘志刚,夏玉洲.低合金耐热钢中金相组织混晶现象分析与对待[J].山东电力高等专科学校学报,2002,5(2):72-73.
|
[10] |
陈荐,黄志杰,李录平,等.30Cr2MoV转子钢蠕变过程中的碳化物变化[J].湖南电力,2004,24(6):1-3.
|
[11] |
李亚江,王娟,周冰.P91耐热钢焊接区的微观组织结构分析[J].焊接学报,2003,24(2):39-43.
|
[12] |
张金旺,题利平,王乐才,等.高温长期时效12%Cr钢中M23C6变化规律研究[J].金属处理学报,1996,17(1):16-20.
|
[13] |
李兵.主蒸汽管道材质鉴定及运行中组织性能的变化[J].电力技术,1982(1):2-6.
|
[14] |
金铮,陈梦谪.12Cr2MoWVTiB钢长期使用过程中的高温腐蚀行为[J].电子显微学报,1992,11(5):397.
|
[15] |
帅歌旺,张萌.铜合金中金相组织特征参数的测量[J].南昌大学学报:理科版,2004,28(3):278-284.
|
[1] | SHOU Derong, DENG Zhenghua, ZHANG Chaoyang. Effect of Iron Addition on Microstructure and Properties of Cu-10Al-4Ni Powder Metallurgy Alloy[J]. Materials and Mechanical Engineering, 2023, 47(8): 18-22. DOI: 10.11973/jxgccl202308003 |
[2] | LUO Haiyu, LIU Bo, HUANG Zhihong, YANG Xiaokang. Effect of Sintering Temperature on Structure and Properties of Powder Metallurgy Fe-Cu-C Alloy under Industrial Condition[J]. Materials and Mechanical Engineering, 2020, 44(1): 68-73. DOI: 10.11973/jxgccl202001012 |
[3] | DENG Zhenghua, ZHANG Cong, WANG Haibao, ZUO Duquan. Effect of Sintering Temperature on Microstructure and Property of Powder Metallurgy Al-24Si Alloy[J]. Materials and Mechanical Engineering, 2019, 43(7): 20-23. DOI: 10.11973/jxgccl201907005 |
[4] | NIE Xiaoqian, ZHANG Chengcheng, WANG Runzi, ZHANG Xiancheng, TU Shantong. Creep-Fatigue Interaction Behavior of Powder Metallurgy Nickel-Based Superalloy FGH96[J]. Materials and Mechanical Engineering, 2019, 43(6): 8-11,17. DOI: 10.11973/jxgccl201906002 |
[5] | YUAN Guosen, YANG Zhanyao. Effect of Hot Extrusion on Microstructure and Tensile Strength of Powder Metallurgy 6061 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 68-71. DOI: 10.11973/jxgccl201801014 |
[6] | SUN Fangfang, MA Shaobo, BI Gang, LI Qilong, WANG Feng. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Powder Metallurgy Low-Alloy Steel[J]. Materials and Mechanical Engineering, 2017, 41(10): 48-51. DOI: 10.11973/jxgccl201710011 |
[7] | JIANG Xiao-dong, LIU Zi-li, ZOU De-hua, LIU Bo-lu. Microstructure and Properties of Fe-1.8Ni-0.5Mo-1.2Cu-0.2C Powders Metallurgy Gear Prepared by Warm Compaction[J]. Materials and Mechanical Engineering, 2012, 36(4): 46-49. |
[8] | YANG Ming, LIU Zi-li, LIU Xi-liang, FEI Fei. Microstructure and Properties of Mg-Si-Zr Magnesium Alloy Prepared by Powder Metallurgy[J]. Materials and Mechanical Engineering, 2010, 34(5): 33-35. |
[9] | WANG Jian-zhong, QU Xuan-hui, YIN Hai-qing, ZHOU Sheng-yu, YI Ming-jun. Research Progress of High Velocity Compaction Technology for High Densification of Powder Metallurgy[J]. Materials and Mechanical Engineering, 2008, 32(9): 5-8. |
[10] | HAI Kun, HU Xue-sheng, GUO Shi-ju. Preparation of Powder Metallurgy Iron-based Friction Materials by Sprinkling Powder Process[J]. Materials and Mechanical Engineering, 2007, 31(1): 35-37. |