• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Er-geng, TONG Sui-fang, WANG Qiong-qi, GUAN Kai-shu. Carbide Transition of 12Cr1MoV Pearlite Heat-resisting Steel in Long-term Service and It's Influence on Material Performance[J]. Materials and Mechanical Engineering, 2009, 33(9): 28-32.
Citation: ZHANG Er-geng, TONG Sui-fang, WANG Qiong-qi, GUAN Kai-shu. Carbide Transition of 12Cr1MoV Pearlite Heat-resisting Steel in Long-term Service and It's Influence on Material Performance[J]. Materials and Mechanical Engineering, 2009, 33(9): 28-32.

Carbide Transition of 12Cr1MoV Pearlite Heat-resisting Steel in Long-term Service and It's Influence on Material Performance

More Information
  • Received Date: July 08, 2009
  • Influences of the carbide transition,carbide size and content in a failed 12Cr1MoV steel superheater on the material properties were studied by means of electrolytic extraction,XRD and EDS.The results show that the important reason of material property deterioration of the pearlite heat-resisting steel in the long-term high temperature service was due to the aggregation and growing up of carbides as well as transition of the carbide type.Analyses of carbides might provide a method to judge whether the 12Cr1MoV pearlite heat-resisting steel should be regarded as useless or not.This method was more reliable and practical than the analytical method of pearlite spheroidization.
  • [1]
    ENNIS P J,ZIELINSKA A,WACHTER O,et al.Microtructural stabiilty and creep rupture strength of the martensitic steel P92 for advanced power plant[J].Acta Mater,1997,45(12):4901-4907.
    [2]
    朱丽慧,赵钦新.10Cr9Mo1VNbN耐热钢的退化机理研究[J].机械工程材料,1999,23(1):6-8,26.
    [3]
    史志刚,侯安柱.李益民,等.T91钢长期运行过程中微观组织老化研究[J].热力发电,2006(4):54-58.
    [4]
    杨瑞成,王晖,郑丽平,等.12Cr1MoV钢高温时效过程中组织结构的演变[J].金属热处理,2002,27(9):18-21.
    [5]
    DL 818-2002低合金耐热钢碳化物相分析技术导则[S].
    [6]
    AR AS B,RIMANTAS L.XRD analysis of carbide phase in heat resistant steels[J].ISSN 1392-1320 Materials Science(MEDIAGOTYRA),2006,12(3):192-198.
    [7]
    章燕谋.锅炉与压力容器用钢[M].西安:西安交通大学出版社,1984.
    [8]
    肖文彬.非破坏性碳化物分析方法[J].新疆电力,2000(3):7-10.
    [9]
    刘志刚,夏玉洲.低合金耐热钢中金相组织混晶现象分析与对待[J].山东电力高等专科学校学报,2002,5(2):72-73.
    [10]
    陈荐,黄志杰,李录平,等.30Cr2MoV转子钢蠕变过程中的碳化物变化[J].湖南电力,2004,24(6):1-3.
    [11]
    李亚江,王娟,周冰.P91耐热钢焊接区的微观组织结构分析[J].焊接学报,2003,24(2):39-43.
    [12]
    张金旺,题利平,王乐才,等.高温长期时效12%Cr钢中M23C6变化规律研究[J].金属处理学报,1996,17(1):16-20.
    [13]
    李兵.主蒸汽管道材质鉴定及运行中组织性能的变化[J].电力技术,1982(1):2-6.
    [14]
    金铮,陈梦谪.12Cr2MoWVTiB钢长期使用过程中的高温腐蚀行为[J].电子显微学报,1992,11(5):397.
    [15]
    帅歌旺,张萌.铜合金中金相组织特征参数的测量[J].南昌大学学报:理科版,2004,28(3):278-284.
  • Related Articles

    [1]SHOU Derong, DENG Zhenghua, ZHANG Chaoyang. Effect of Iron Addition on Microstructure and Properties of Cu-10Al-4Ni Powder Metallurgy Alloy[J]. Materials and Mechanical Engineering, 2023, 47(8): 18-22. DOI: 10.11973/jxgccl202308003
    [2]LUO Haiyu, LIU Bo, HUANG Zhihong, YANG Xiaokang. Effect of Sintering Temperature on Structure and Properties of Powder Metallurgy Fe-Cu-C Alloy under Industrial Condition[J]. Materials and Mechanical Engineering, 2020, 44(1): 68-73. DOI: 10.11973/jxgccl202001012
    [3]DENG Zhenghua, ZHANG Cong, WANG Haibao, ZUO Duquan. Effect of Sintering Temperature on Microstructure and Property of Powder Metallurgy Al-24Si Alloy[J]. Materials and Mechanical Engineering, 2019, 43(7): 20-23. DOI: 10.11973/jxgccl201907005
    [4]NIE Xiaoqian, ZHANG Chengcheng, WANG Runzi, ZHANG Xiancheng, TU Shantong. Creep-Fatigue Interaction Behavior of Powder Metallurgy Nickel-Based Superalloy FGH96[J]. Materials and Mechanical Engineering, 2019, 43(6): 8-11,17. DOI: 10.11973/jxgccl201906002
    [5]YUAN Guosen, YANG Zhanyao. Effect of Hot Extrusion on Microstructure and Tensile Strength of Powder Metallurgy 6061 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 68-71. DOI: 10.11973/jxgccl201801014
    [6]SUN Fangfang, MA Shaobo, BI Gang, LI Qilong, WANG Feng. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Powder Metallurgy Low-Alloy Steel[J]. Materials and Mechanical Engineering, 2017, 41(10): 48-51. DOI: 10.11973/jxgccl201710011
    [7]JIANG Xiao-dong, LIU Zi-li, ZOU De-hua, LIU Bo-lu. Microstructure and Properties of Fe-1.8Ni-0.5Mo-1.2Cu-0.2C Powders Metallurgy Gear Prepared by Warm Compaction[J]. Materials and Mechanical Engineering, 2012, 36(4): 46-49.
    [8]YANG Ming, LIU Zi-li, LIU Xi-liang, FEI Fei. Microstructure and Properties of Mg-Si-Zr Magnesium Alloy Prepared by Powder Metallurgy[J]. Materials and Mechanical Engineering, 2010, 34(5): 33-35.
    [9]WANG Jian-zhong, QU Xuan-hui, YIN Hai-qing, ZHOU Sheng-yu, YI Ming-jun. Research Progress of High Velocity Compaction Technology for High Densification of Powder Metallurgy[J]. Materials and Mechanical Engineering, 2008, 32(9): 5-8.
    [10]HAI Kun, HU Xue-sheng, GUO Shi-ju. Preparation of Powder Metallurgy Iron-based Friction Materials by Sprinkling Powder Process[J]. Materials and Mechanical Engineering, 2007, 31(1): 35-37.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return