Citation: | TAN Nian-fu, CHEN Xiu-hua, FA Yang-yang, WANG Hai. Numerical Analysis on Low-Velocity Impact Damage and Residual Strength of Foam Sandwich Composites[J]. Materials and Mechanical Engineering, 2012, 36(8): 89-92. |
[1] |
李涛, 陈蔚, 成理, 等. 泡沫夹层结构复合材料的应用与发展[J].科技创新导报, 2009(14):1-5.
|
[2] |
陈一民, 何斌. PMI高性能泡沫夹层材料的应用及国内研制现状[C]//第16届全国复合材料学术会议论文集.北京: 中国科学技术出版社, 2010.
|
[3] |
陈海欢.X-core增强泡沫夹层复合材料结构力学行为研究[D].上海: 上海交通大学, 2010.
|
[4] |
GDOUTOS E E, DANIEL I M. Failure modes of composite sandwich beams[J].Theoret Appl Mech, 2008, 35(1/3): 105-118.
|
[5] |
唐啸东, 沈真, 陈普会, 等. 带损伤复合材料层压板剩余强度估算方法研究[J].航空学报, 1997(2): 60-65.
|
[6] |
程小全, 张子龙, 吴学仁. 小尺寸试件层合板低速冲击后剩余压缩强度[J].复合材料学报, 2002, 19(6): 8-12.
|
[7] |
崔海坡, 温卫东, 崔海涛. 复合材料层合板冲击损伤及剩余强度分析方法[J].固体力学学报, 2006, 27(3): 237-242.
|
[8] |
MAJUMDAR P, SRINIVASAGUPTA D, MAHFUZ H, et al. Effect of processing conditions and material properties on the debond fracture toughness of foam-core sandwich composites: experimental optimization[J].Composites Part A: Applied Science and Manufacturing, 2003, 34(11): 1097-1104.
|
[9] |
朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟[J].复合材料学报, 2010, 27(6): 200-206.
|
[10] |
HASHIN Z. Failure criteria for unidirectional fibre composites[J].Journal of Applied Mechanics, 1980, 47(6): 639-644.
|
[11] |
DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253-1283.
|
[12] |
SHIPSHA A, ZENKERT D. Compression-after-impact strength of sandwich panels with core crushing damage[J]. Applied Composite Materials, 2005, 12(3/4): 149-164.
|
[13] |
WANG S X, WU L Z, MA Li. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates[J]. Materials & Design, 2010, 31(1): 118-125.
|
[14] |
杨光松. 损伤力学与复合材料损伤[M]. 北京: 国防工业出版社, 1995.
|
[15] |
贾建东, 丁运亮, 胡伯仁. 复合材料层合板低速冲击后压缩破坏的数值模拟[J]. 机械科学与技术, 2010, 29(10): 1320-1324.
|
[16] |
KOISSIN V, SHIPSHA A, SKVORTSOV V. Compression strength of sandwich panels with sub-interface damage in the foam core[J]. Composites Science and Technology, 2009, 69(13): 2231-2240.
|
[1] | SHOU Derong, DENG Zhenghua, ZHANG Chaoyang. Effect of Iron Addition on Microstructure and Properties of Cu-10Al-4Ni Powder Metallurgy Alloy[J]. Materials and Mechanical Engineering, 2023, 47(8): 18-22. DOI: 10.11973/jxgccl202308003 |
[2] | LUO Haiyu, LIU Bo, HUANG Zhihong, YANG Xiaokang. Effect of Sintering Temperature on Structure and Properties of Powder Metallurgy Fe-Cu-C Alloy under Industrial Condition[J]. Materials and Mechanical Engineering, 2020, 44(1): 68-73. DOI: 10.11973/jxgccl202001012 |
[3] | DENG Zhenghua, ZHANG Cong, WANG Haibao, ZUO Duquan. Effect of Sintering Temperature on Microstructure and Property of Powder Metallurgy Al-24Si Alloy[J]. Materials and Mechanical Engineering, 2019, 43(7): 20-23. DOI: 10.11973/jxgccl201907005 |
[4] | NIE Xiaoqian, ZHANG Chengcheng, WANG Runzi, ZHANG Xiancheng, TU Shantong. Creep-Fatigue Interaction Behavior of Powder Metallurgy Nickel-Based Superalloy FGH96[J]. Materials and Mechanical Engineering, 2019, 43(6): 8-11,17. DOI: 10.11973/jxgccl201906002 |
[5] | YUAN Guosen, YANG Zhanyao. Effect of Hot Extrusion on Microstructure and Tensile Strength of Powder Metallurgy 6061 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 68-71. DOI: 10.11973/jxgccl201801014 |
[6] | SUN Fangfang, MA Shaobo, BI Gang, LI Qilong, WANG Feng. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Powder Metallurgy Low-Alloy Steel[J]. Materials and Mechanical Engineering, 2017, 41(10): 48-51. DOI: 10.11973/jxgccl201710011 |
[7] | JIANG Xiao-dong, LIU Zi-li, ZOU De-hua, LIU Bo-lu. Microstructure and Properties of Fe-1.8Ni-0.5Mo-1.2Cu-0.2C Powders Metallurgy Gear Prepared by Warm Compaction[J]. Materials and Mechanical Engineering, 2012, 36(4): 46-49. |
[8] | YANG Ming, LIU Zi-li, LIU Xi-liang, FEI Fei. Microstructure and Properties of Mg-Si-Zr Magnesium Alloy Prepared by Powder Metallurgy[J]. Materials and Mechanical Engineering, 2010, 34(5): 33-35. |
[9] | WANG Jian-zhong, QU Xuan-hui, YIN Hai-qing, ZHOU Sheng-yu, YI Ming-jun. Research Progress of High Velocity Compaction Technology for High Densification of Powder Metallurgy[J]. Materials and Mechanical Engineering, 2008, 32(9): 5-8. |
[10] | HAI Kun, HU Xue-sheng, GUO Shi-ju. Preparation of Powder Metallurgy Iron-based Friction Materials by Sprinkling Powder Process[J]. Materials and Mechanical Engineering, 2007, 31(1): 35-37. |