• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
TAN Nian-fu, CHEN Xiu-hua, FA Yang-yang, WANG Hai. Numerical Analysis on Low-Velocity Impact Damage and Residual Strength of Foam Sandwich Composites[J]. Materials and Mechanical Engineering, 2012, 36(8): 89-92.
Citation: TAN Nian-fu, CHEN Xiu-hua, FA Yang-yang, WANG Hai. Numerical Analysis on Low-Velocity Impact Damage and Residual Strength of Foam Sandwich Composites[J]. Materials and Mechanical Engineering, 2012, 36(8): 89-92.

Numerical Analysis on Low-Velocity Impact Damage and Residual Strength of Foam Sandwich Composites

More Information
  • Received Date: April 21, 2012
  • Based on gradually cumulative damage theory and data transferring analysis method, a full numerical analysis method was presented to simulate the low-velocity impact and the compression failure process after low-velocity impact for foam sandwich composites, which simulated the whole process of the impact of foam sandwich composites and damage propagation under compressive load for the sandwich composites with impact-damage. The results show that the method enhanced the prediction precision for the ultimate failure load and residual strength because the method avoided the artificial assumption for the damage state made by previous scholars after the sandwich composite was impacted, and directly transferred the impact damage to study the residual strength. The numerical simulation results were in good agreement with tested results.
  • [1]
    李涛, 陈蔚, 成理, 等. 泡沫夹层结构复合材料的应用与发展[J].科技创新导报, 2009(14):1-5.
    [2]
    陈一民, 何斌. PMI高性能泡沫夹层材料的应用及国内研制现状[C]//第16届全国复合材料学术会议论文集.北京: 中国科学技术出版社, 2010.
    [3]
    陈海欢.X-core增强泡沫夹层复合材料结构力学行为研究[D].上海: 上海交通大学, 2010.
    [4]
    GDOUTOS E E, DANIEL I M. Failure modes of composite sandwich beams[J].Theoret Appl Mech, 2008, 35(1/3): 105-118.
    [5]
    唐啸东, 沈真, 陈普会, 等. 带损伤复合材料层压板剩余强度估算方法研究[J].航空学报, 1997(2): 60-65.
    [6]
    程小全, 张子龙, 吴学仁. 小尺寸试件层合板低速冲击后剩余压缩强度[J].复合材料学报, 2002, 19(6): 8-12.
    [7]
    崔海坡, 温卫东, 崔海涛. 复合材料层合板冲击损伤及剩余强度分析方法[J].固体力学学报, 2006, 27(3): 237-242.
    [8]
    MAJUMDAR P, SRINIVASAGUPTA D, MAHFUZ H, et al. Effect of processing conditions and material properties on the debond fracture toughness of foam-core sandwich composites: experimental optimization[J].Composites Part A: Applied Science and Manufacturing, 2003, 34(11): 1097-1104.
    [9]
    朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟[J].复合材料学报, 2010, 27(6): 200-206.
    [10]
    HASHIN Z. Failure criteria for unidirectional fibre composites[J].Journal of Applied Mechanics, 1980, 47(6): 639-644.
    [11]
    DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253-1283.
    [12]
    SHIPSHA A, ZENKERT D. Compression-after-impact strength of sandwich panels with core crushing damage[J]. Applied Composite Materials, 2005, 12(3/4): 149-164.
    [13]
    WANG S X, WU L Z, MA Li. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates[J]. Materials & Design, 2010, 31(1): 118-125.
    [14]
    杨光松. 损伤力学与复合材料损伤[M]. 北京: 国防工业出版社, 1995.
    [15]
    贾建东, 丁运亮, 胡伯仁. 复合材料层合板低速冲击后压缩破坏的数值模拟[J]. 机械科学与技术, 2010, 29(10): 1320-1324.
    [16]
    KOISSIN V, SHIPSHA A, SKVORTSOV V. Compression strength of sandwich panels with sub-interface damage in the foam core[J]. Composites Science and Technology, 2009, 69(13): 2231-2240.
  • Related Articles

    [1]SHOU Derong, DENG Zhenghua, ZHANG Chaoyang. Effect of Iron Addition on Microstructure and Properties of Cu-10Al-4Ni Powder Metallurgy Alloy[J]. Materials and Mechanical Engineering, 2023, 47(8): 18-22. DOI: 10.11973/jxgccl202308003
    [2]LUO Haiyu, LIU Bo, HUANG Zhihong, YANG Xiaokang. Effect of Sintering Temperature on Structure and Properties of Powder Metallurgy Fe-Cu-C Alloy under Industrial Condition[J]. Materials and Mechanical Engineering, 2020, 44(1): 68-73. DOI: 10.11973/jxgccl202001012
    [3]DENG Zhenghua, ZHANG Cong, WANG Haibao, ZUO Duquan. Effect of Sintering Temperature on Microstructure and Property of Powder Metallurgy Al-24Si Alloy[J]. Materials and Mechanical Engineering, 2019, 43(7): 20-23. DOI: 10.11973/jxgccl201907005
    [4]NIE Xiaoqian, ZHANG Chengcheng, WANG Runzi, ZHANG Xiancheng, TU Shantong. Creep-Fatigue Interaction Behavior of Powder Metallurgy Nickel-Based Superalloy FGH96[J]. Materials and Mechanical Engineering, 2019, 43(6): 8-11,17. DOI: 10.11973/jxgccl201906002
    [5]YUAN Guosen, YANG Zhanyao. Effect of Hot Extrusion on Microstructure and Tensile Strength of Powder Metallurgy 6061 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 68-71. DOI: 10.11973/jxgccl201801014
    [6]SUN Fangfang, MA Shaobo, BI Gang, LI Qilong, WANG Feng. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Powder Metallurgy Low-Alloy Steel[J]. Materials and Mechanical Engineering, 2017, 41(10): 48-51. DOI: 10.11973/jxgccl201710011
    [7]JIANG Xiao-dong, LIU Zi-li, ZOU De-hua, LIU Bo-lu. Microstructure and Properties of Fe-1.8Ni-0.5Mo-1.2Cu-0.2C Powders Metallurgy Gear Prepared by Warm Compaction[J]. Materials and Mechanical Engineering, 2012, 36(4): 46-49.
    [8]YANG Ming, LIU Zi-li, LIU Xi-liang, FEI Fei. Microstructure and Properties of Mg-Si-Zr Magnesium Alloy Prepared by Powder Metallurgy[J]. Materials and Mechanical Engineering, 2010, 34(5): 33-35.
    [9]WANG Jian-zhong, QU Xuan-hui, YIN Hai-qing, ZHOU Sheng-yu, YI Ming-jun. Research Progress of High Velocity Compaction Technology for High Densification of Powder Metallurgy[J]. Materials and Mechanical Engineering, 2008, 32(9): 5-8.
    [10]HAI Kun, HU Xue-sheng, GUO Shi-ju. Preparation of Powder Metallurgy Iron-based Friction Materials by Sprinkling Powder Process[J]. Materials and Mechanical Engineering, 2007, 31(1): 35-37.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return