Citation: | WANG Fadong, ZHAO Hongfeng, XIE Qingyun. Influence of In2O3 Doping Amount on Electrical Properties of Sb-based SnO2 Varistors[J]. Materials and Mechanical Engineering, 2023, 47(6): 25-29,66. DOI: 10.11973/jxgccl202306005 |
[1] |
李振昊,李文乐,孔繁华,等.掺杂二氧化锡的应用研究进展[J].化工进展,2010,29(12):2324-2329.
LI Z H,LI W L,KONG F H,et al.Advances in applied research of doped SnO2[J].Chemical Industry and Engineering Progress,2010,29(12):2324-2329.
|
[2] |
PIANARO S A,BUENO P R,LONGO E,et al.A new SnO2-based varistor system[J].Journal of Materials Science Letters,1995,14(10):692-694.
|
[3] |
ALBERTO CERRI J,LEITE E R,GOUVÊA D,et al.Effect of cobalt(II) oxide and manganese(IV) oxide on sintering of tin(IV) oxide[J].Journal of the American Ceramic Society,1996,79(3):799-804.
|
[4] |
AGUILAR-MARTÍNEZ J A,ZAMBRANO-ROBLEDO P,GARCÍA-VILLARREAL S,et al.Effect of high content of Co3O4 on the structure,morphology,and electrical properties of (Cr,Sb)-doped SnO2 varistors[J].Ceramics International,2016,42(6):7576-7582.
|
[5] |
TOMINC S, RENIK A, SAMARDIJA Z,et al.Twinning and charge compensation in Nb2O5-doped SnO2-CoO ceramics exhibiting promising varistor characteristics[J].Ceramics International,2018,44(2):1603-1613.
|
[6] |
BUENO P R, VARELA J A, LONGO E.SnO2,ZnO and related polycrystalline compound semiconductors:An overview and review on the voltage-dependent resistance (non-ohmic) feature[J].Journal of the European Ceramic Society,2008,28(3):505-529.
|
[7] |
PONCE M A,RAMÍREZ M A,PARRA R,et al.Influence of degradation on the electrical conduction process in ZnO and SnO2-based varistors[J].Journal of Applied Physics,2010,108(7):074505.
|
[8] |
HE J L.Metal oxide varistors:From microstructure to macro-characteristics[M].New York: John Wiley & Sons, 2019.
|
[9] |
何金良,胡军,孟博文,等.特高压GIS避雷器对压敏电阻电压梯度的要求[J].中国科学(E辑:技术科学),2009,39(4):735-739.
HE J L,HU J,MENG B W,et al.Requirements of UHV GIS arrester on voltage gradient of varistor[J].Science in China (Series E:Technological Sciences),2009,39(4):735-739.
|
[10] |
王兰义,任鑫,黄海,等.国内外避雷器用氧化锌电阻片的技术现状与发展趋势[J].电瓷避雷器,2021(6):30-44.
WANG L Y,REN X,HUANG H,et al.The development trends of zinc oxide varistor used in surge arrester both in China and abroad[J].Insulators and Surge Arresters,2021(6):30-44.
|
[11] |
BONDARCHUK A N,GLOT A B,VELASCO-ROSALES A R.Effects of Sb and Nb dopants on electrical and microstructural properties of low-voltage varistor ceramics based on SnO2[J].Ceramics International,2018,44(7):7844-7850.
|
[12] |
FUKANO T,MIZUTANI M,KAYANO Y,et al.Development of GIS type surge arrester applying ultra high voltage gradient ZnO element[C]//PES T&D.Orlando,FL,USA:IEEE,2012:1-5.
|
[13] |
WANG W X,WANG J F,CHEN H C,et al.Effects of In2O3 on the properties of (Co,Nb)-doped SnO2varistors[J].Journal of Physics D:Applied Physics,2003,36(8):1040-1043.
|
[14] |
LIU D J, WANG W Q,WANG F, et al.High nonlinear coefficient SnO2 varistors tailored by Mn2O3 doping[J].Materials Science in Semiconductor Processing,2020,117:105160.
|
[15] |
ZANG G Z, WANG J F, CHEN H C, et al.Effect of In2O3 doping and sintering on the electrical properties and the microstructure of (Co,Ta)-doped SnO2 varistors[J].Journal of Non-Crystalline Solids,2005,351(10/11):941-945.
|
[16] |
LIANG W X, ZHAO H F,FAN S H, et al.Improvement of voltage gradient and leakage current characteristics of Mn2O3 and In2O3 added SnO2-ZnO-Ta2O5 based varistor[J].Materials Science in Semiconductor Processing,2021,124:105582.
|
[17] |
KATO T,HORI A,YAMASHITA S,et al.Development of new zinc-oxide varistor with higher threshold voltage for compact arresters[J].IEEJ Transactions on Power and Energy,2000,120(7):968-974.
|
[18] |
TOMINC S,RECNIK A, SAMARDZIJA Z, et al.Twinning and charge compensation in Nb2O5-doped SnO2-CoO ceramics exhibiting promising varistor characteristics[J].Ceramics International,2018,44(2):1603-1613.
|
[19] |
PIANARO S A,BUENO P R,OLIVI P,et al.Electrical properties of the SnO2-based varistor[J].Journal of Materials Science:Materials in Electronics,1998,9(2):159-165.
|
[20] |
HU G L,ZHU J F,YANG H B,et al.Effect of Cr2O3 addition on the microstructure and electrical properties of SnO2-based varistor[J].Journal of Materials Science:Materials in Electronics,2013,24(6):1735-1740.
|
[21] |
BUENO P R,DE CASSIA-SANTOS M R,LEITE E R,et al.Nature of the Schottky-type barrier of highly dense SnO2 systems displaying nonohmic behavior[J].Journal of Applied Physics,2000,88(11):6545-6548.
|
[22] |
LU Z Y,CHEN Z W,WU J Q.SnO2-based varistors capable of withstanding surge current[J].Journal of the Ceramic Society of Japan,2009,117(1367):851-855.
|
[23] |
BUENO P R,PIANARO S A,PEREIRA E C,et al.Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy[J].Journal of Applied Physics,1998,84(7):3700-3705.
|
[24] |
GUPTA T K,CARLSON W G.A grain-boundary defect model for instability/stability of a ZnO varistor[J].Journal of Materials Science,1985,20(10):3487-3500.
|
[25] |
ANTUNES A C,ANTUNES S M,ZARA A J,et al.Effect of Fe2O3 doping on the electrical properties of a SnO2 based varistor[J].Journal of Materials Science,2002,37(12):2407-2411.
|
[26] |
BUENO P R,OLIVEIRA M M,BACELAR-JUNIOR W K,et al.Analysis of the admittance-frequency and capacitance-voltage of dense SnO2·CoO-based varistor ceramics[J].Journal of Applied Physics,2002,91(9):6007-6014.
|
[27] |
LEITE E R,NASCIMENTO A M,BUENO P R,et al.The influence of sintering process and atmosphere on the non-ohmic properties of SnO2 based varistor[J].Journal of Materials Science:Materials in Electronics,1999,10(4):321-327.
|
[28] |
FAYAT J, CASTRO M S.Defect profile and microstructural development in SnO2-based varistors[J].Journal of the European Ceramic Society,2003,23(10):1585-1591.
|
[1] | SHI Qianwen, ZHAO Hongfeng, XIE Qingyun, MENG Xiaoji. Effect of SiO2 Doping Amount on Electrical Performance of SnO2 Varistor[J]. Materials and Mechanical Engineering, 2024, 48(4): 57-62. DOI: 10.11973/jxgccl202404009 |
[2] | HAO Yachao, ZHAO Hongfeng, XIE Qingyun. Effect of Cr2O3 Doping Amount on Microstructure and Electrical Properties of SnO2 Varistor[J]. Materials and Mechanical Engineering, 2024, 48(1): 74-78. DOI: 10.11973/jxgccl202401012 |
[3] | ZHAO Yiliang, HUANG Nan, RU Hongqiang, ZHANG Cuiping, YUE Xinyan, LIU Chunming, WANG Wei. Effect of Sintering Additive Al2O3-Y2O3 Addition on Structure and Properties ofTiC Ceramics by Pressureless Liquid Phase Sintering[J]. Materials and Mechanical Engineering, 2022, 46(11): 55-59. DOI: 10.11973/jxgccl202211009 |
[4] | SUN Guanyue, ZHAO Hongfeng, LIU Dongji, ZHOU Yuanxiang, XIE Qingyun. Effect of Oxygen-enriched Atmosphere Sintering on Microstructure and Electrical Properties of SnO2 Varistors[J]. Materials and Mechanical Engineering, 2022, 46(10): 39-43. DOI: 10.11973/jxgccl202210007 |
[5] | YU Peiyuan, ZHAO Hongfeng. Effect of Doping Amount of Sb2O5 on Electrical Properties of SnO2 Ceramic Piezoresistor Under Co-doping with Y2O3[J]. Materials and Mechanical Engineering, 2021, 45(9): 26-29. DOI: 10.11973/jxgccl202109005 |
[6] | AN Di, LUO Xudong, LIU Pengcheng, XIE Zhipeng, LI Ting. Effects of Y2O3 Doping on Sintering Properties and Microstructure of CaTiO3 Ceramics[J]. Materials and Mechanical Engineering, 2018, 42(4): 53-57. DOI: 10.11973/jxgccl201804012 |
[7] | WANG Na, YANG Qi, CUI Shuai, YANG Lu. Microstructure and Performance of SnO2-C Composite Coating with Network Structure Used for Lithium Ion Batteries Anode[J]. Materials and Mechanical Engineering, 2017, 41(11): 23-28. DOI: 10.11973/jxgccl201711004 |
[8] | MA Ren-quan, QU Xiu-rong, LV Shu-chen, XU Yan-yan, CUI Nai-geng. Effects of Ni-doping on Microstructure and Electric Transport Properties of Ca3Co4O9+δ Based Ceramics[J]. Materials and Mechanical Engineering, 2016, 40(6): 24-27. DOI: 10.11973/jxgccl201606005 |
[9] | LI Wei, CHEN Wen-zhe, ZHENG Chan. Microstructure and Photoluminescent Properties of Eu3+:SnO2 Glass Ceramics[J]. Materials and Mechanical Engineering, 2015, 39(9): 60-63. DOI: 10.11973/jxgccl201509014 |
[10] | Lv Bao-hua, LI Yu-zhen, HUANG Jian, REN Xiao-juan. Effects of Sn-doping Amounts on Optical Properties and Morphology of In2O3 Powders[J]. Materials and Mechanical Engineering, 2015, 39(1): 49-51. |