• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
SHI Qianwen, ZHAO Hongfeng, XIE Qingyun, MENG Xiaoji. Effect of SiO2 Doping Amount on Electrical Performance of SnO2 Varistor[J]. Materials and Mechanical Engineering, 2024, 48(4): 57-62. DOI: 10.11973/jxgccl202404009
Citation: SHI Qianwen, ZHAO Hongfeng, XIE Qingyun, MENG Xiaoji. Effect of SiO2 Doping Amount on Electrical Performance of SnO2 Varistor[J]. Materials and Mechanical Engineering, 2024, 48(4): 57-62. DOI: 10.11973/jxgccl202404009

Effect of SiO2 Doping Amount on Electrical Performance of SnO2 Varistor

More Information
  • Received Date: April 05, 2023
  • Revised Date: March 15, 2024
  • SnO2 varistor doped with SiO2 of different mole fractions (0.01%, 0.05%, 0.10%, 0.15%, 0.20%) was prepared by traditional method. The effect of SiO2 doping amounts on the electrical performance of SnO2 varistor was studied. The results show that with the increase of SiO2 doping amounts, the voltage gradient, nonlinear coefficient, barrier height, donor density and interfacial state density of SnO2 varistor first increased and then decreased, the leakage current density first decreased and then increased, and the grain boundary resistance increased. When the mole fraction of SiO2 was 0.10%, the SnO2 varistor had the best comprehensive electrical performance, with the largest voltage gradient, nonlinear coefficient, donor density, interfacial state density and the barrier height, and the smallest leakage current density, which were 582 V·mm-1, 33, 1.7×1023 m-3, 6.7×1016 m-2, 2.03 eV, 7.06 μA·cm-2, respectively.

  • [1]
    李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.

    LI H, LIU D, YAO D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
    [2]
    HE J L, LI C, HU J, et al. Deep suppression of switching overvoltages in AC UHV systems using low residual arresters[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2718-2725.
    [3]
    BUENO P R, VARELA J A, BARRADO C M, et al. A comparative study of thermal conductivity in ZnO- and SnO2-based varistor systems[J]. Journal of the American Ceramic Society, 2005, 88(9): 2629-2631.
    [4]
    YANAGIYA S, NONG N V, XU J, et al. Thermoelectric properties of SnO2 ceramics doped with Sb and Zn[J]. Journal of Electronic Materials, 2011, 40(5): 674-677.
    [5]
    PIANARO S A, BUENO P R, OLIVI P, et al. Electrical properties of the SnO2-based varistor[J]. Journal of Materials Science: Materials in Electronics, 1998, 9(2): 159-165.
    [6]
    OLIVEIRA M M, BUENO P R, LONGO E, et al. Influence of La2O3, Pr2O3 and CeO2 on the nonlinear properties of SnO2 multicomponent varistors[J]. Materials Chemistry and Physics, 2002, 74(2): 150-153.
    [7]
    DHAGE S R, RAVI V. Influence of various donors on nonlinear I-V characteristics of tin dioxide ceramics[J]. Applied Physics Letters, 2003, 83(22): 4539-4541.
    [8]
    WANG J F, CHEN H C, SU W B, et al. Effects of Sr on the microstructure and electrical properties of (Co, Ta)-doped SnO2 varistors[J]. Journal of Alloys and Compounds, 2006, 413(1/2): 35-39.
    [9]
    WANG J F, CHEN H C, WANG W X, et al. Electrical nonlinearity of (Ni, Ta) doped SnO2 varistors[J]. Materials Science and Engineering: B, 2003, 99(1/2/3): 465-469.
    [10]
    WANG C M, WANG J F, SU W B, et al. Improvement in the nonlinear electrical characteristics of SnO2 ceramic varistors with Dy2O3 additive[J]. Materials Science and Engineering: B, 2006, 127(2/3): 112-116.
    [11]
    BAI H R, ZHANG M H, XU Z J, et al. The effect of SiO2 on electrical properties of low-temperature-sintered ZnO-Bi2O3-TiO2-Co2O3-MnO2-based ceramics[J]. Journal of the American Ceramic Society, 2017, 100(3): 1057-1064.
    [12]
    WURST J C, NELSON J A. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics[J]. Journal of the American Ceramic Society, 1972, 55(2): 109.
    [13]
    METZ R, HASSANZADEH M, MAHESH K V, et al. Quasi-ideal nonlinear electrical behavior of polycrystalline SnO2 ceramic varistors doped with SiO2 [J]. Journal of Electronic Materials, 2014, 43(5): 1411-1418.
    [14]
    BACELAR W K, OLIVEIRA M M, SOUZA V C, et al. Influence of the oxygen adsorbed on tin varistors doped with Co, Mn and Cr oxides[J]. Journal of Materials Science: Materials in Electronics, 2002, 13(7): 409-414.
    [15]
    BALASHOV A B, GOLUBEVA N P, SKIDAN B S. Oxide zinc ceramics for varistors[J]. Glass and Ceramics, 1999, 56(1): 58-60.
    [16]
    SANTOS M R C, BUENO P R, LONGO E, et al. Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors[J]. Journal of the European Ceramic Society, 2001, 21(2): 161-167.
    [17]
    IVON A I, GLOT A B, LAVROV R I, et al. Grain resistivity in zinc oxide and tin dioxide varistor ceramics[J]. Journal of Alloys and Compounds, 2014, 616: 372-377.
    [18]
    ZANG G Z, WANG X F, LI L B. Effect of SiO2 on the varistor and dielectric properties of SnO2-Zn2SnO4 ceramic composites[J]. Transactions of the Indian Ceramic Society, 2016, 75(4): 225-228.
    [19]
    ZANG G Z, WANG X F, LI L B, et al. Varistor and dielectric properties of SiO2 doped SnO2-Zn2SnO4 ceramic composites[J]. Ceramics International, 2016, 42(16): 18124-18127.
    [20]
    DIBB A, TEBCHERANI S M, SANTOS M R C, et al. MnO2 influence on the electrical properties of SnO2-based ceramic systems[J]. Key Engineering Materials, 2001, 189: 161-165.
    [21]
    ORLANDI M O, BOMIO M R D, LONGO E, et al. Nonohmic behavior of SnO2-MnO polycrystalline ceramics. II. Analysis of admittance and dielectric spectroscopy[J]. Journal of Applied Physics, 2004, 96(7): 3811-3817.
  • Related Articles

    [1]HAO Yachao, ZHAO Hongfeng, XIE Qingyun. Effect of Cr2O3 Doping Amount on Microstructure and Electrical Properties of SnO2 Varistor[J]. Materials and Mechanical Engineering, 2024, 48(1): 74-78. DOI: 10.11973/jxgccl202401012
    [2]WANG Fadong, ZHAO Hongfeng, XIE Qingyun. Influence of In2O3 Doping Amount on Electrical Properties of Sb-based SnO2 Varistors[J]. Materials and Mechanical Engineering, 2023, 47(6): 25-29,66. DOI: 10.11973/jxgccl202306005
    [3]SUN Guanyue, ZHAO Hongfeng, LIU Dongji, ZHOU Yuanxiang, XIE Qingyun. Effect of Oxygen-enriched Atmosphere Sintering on Microstructure and Electrical Properties of SnO2 Varistors[J]. Materials and Mechanical Engineering, 2022, 46(10): 39-43. DOI: 10.11973/jxgccl202210007
    [4]WU Fan, WANG Bingxu, HU Ming, YANG Jinlin, HU Zirui, CUI Weiwei, ZHANG Yu. Tribological Performance of Nano-lubricating Oil Containing SnO2 Nanoparticles[J]. Materials and Mechanical Engineering, 2022, 46(9): 52-56. DOI: 10.11973/jxgccl202209009
    [5]RAN Shuming. Preparation and Thermophysical Properties of New Composite Oxides for Thermal Barrier Coating[J]. Materials and Mechanical Engineering, 2022, 46(7): 27-31,37. DOI: 10.11973/jxgccl202207006
    [6]YU Peiyuan, ZHAO Hongfeng. Effect of Doping Amount of Sb2O5 on Electrical Properties of SnO2 Ceramic Piezoresistor Under Co-doping with Y2O3[J]. Materials and Mechanical Engineering, 2021, 45(9): 26-29. DOI: 10.11973/jxgccl202109005
    [7]TANG Jingyi, CAI Yixiong, SHAO Yanqun, ZHANG Yanbin. Electrocatalytic Degradation Performance of Ti/SnO2-NiO-RuO2 Electrodes with Different Doping Amounts of RuO2[J]. Materials and Mechanical Engineering, 2021, 45(6): 31-38. DOI: 10.11973/jxgccl202106006
    [8]WANG Na, YANG Qi, CUI Shuai, YANG Lu. Microstructure and Performance of SnO2-C Composite Coating with Network Structure Used for Lithium Ion Batteries Anode[J]. Materials and Mechanical Engineering, 2017, 41(11): 23-28. DOI: 10.11973/jxgccl201711004
    [9]WANG Dong-sheng, TIAN Zong-jun, QU Guang, ZHANG Shao-wu, SHEN Li-da, HUANG Yin-hui. Microstructure and Properties of Plasma-Sprayed Nanostructure ZrO2-7%Y2O3 Thermal Barrier Coatings[J]. Materials and Mechanical Engineering, 2011, 35(3): 87-91.
    [10]LI Zhen-jun, ZHANG Hong-song, WEI Yuan, CHEN Xiao-ge. Pore Structure of the Plasma Sprayed Nanostructured ZrO2 Gradient Thermal Barrier Coating[J]. Materials and Mechanical Engineering, 2009, 33(4): 85-88.

Catalog

    Article views (3) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return