利用基于密度泛函理论的第一性原理计算方法,研究了不同钆掺杂量(La1−xGdx)2Ce2O7(x为物质的量分数,取0,0.25,0.50,0.75,1.00)的几何结构、电子结构、力学和热学性能。结果表明:(La1−xGdx)2Ce2O7能带结构为Γ-X间接带隙,带隙随着x的增加而减小;随着x的增加,(La1−xGdx)2Ce2O7的晶格常数和体积先减小后增大,相对分子质量增大,密度先增大后减小;(La1−xGdx)2Ce2O7的力学性能均符合Born-Huang稳定性判据,说明(La1−xGdx)2Ce2O7具有良好的力学稳定性;Pugh比(剪切模量与体模量之比)小于0.571,泊松比大于0.26,说明(La1−xGdx)2Ce2O7具有良好的韧性,具备承受热循环应力的能力;(La1−xGdx)2Ce2O7的最小热导率在0.98~1.26 W·m−1·K−1之间,低于氧化钇稳定氧化锆,表明(La1−xGdx)2Ce2O7具有良好的热学性能,可以作为热障涂层的候选材料。
石墨氮化碳(g-C3N4)在新能源开发和环境修复方面具有巨大的应用潜力,但纯g-C3N4存在的光吸收范围小、结晶度高、光生载流子复合率高和活性位点偏少等缺点限制了其应用范围。引入碳量子点(CQDs)构建复合相,可以增加g-C3N4的反应活性位点,加快其表面电荷的转移,抑制载流子的复合,从而提升其光催化活性。对CQDs的制备方法和原料来源,以及CQDs/g-C3N4复合材料的合成方法(溶剂热法、煅烧法、自组装法)和光催化性能的提升策略等方面的研究进展进行了综述,介绍了近年来CQDs/g-C3N4复合材料在氢气制取、污染物降解、抗菌方面的应用,最后对CQDs/g-C3N4复合材料的未来发展方向进行了展望。
在含溶解氧(质量浓度分别为300,1 000 μg·L−1)环境中对Zr-0.4Sn-0.7Nb-0.3Fe-0.1Cr-0.15Mo-0.12O新型低锡中铌锆合金进行了长达300 d的堆外高压釜腐蚀试验,研究了腐蚀过程中合金表面氧化膜微观结构的变化,并结合离位电化学检测表征了腐蚀后合金的电化学性能,分析了溶解氧对电化学性能的影响。结果表明:在含溶解氧环境中腐蚀时,合金表面氧化膜的厚度随时间呈线性增加,氧化膜内裂纹增多,氧化膜/基体界面起伏加剧;当溶解氧含量较高时,合金的腐蚀质量增加较大,表面氧化膜内裂纹较多。在含溶解氧环境中腐蚀130 d时,合金的自腐蚀电位和极化电阻最小,自腐蚀电流密度最大,其耐腐蚀性不仅与表面氧化膜厚度有关,还受氧化膜内缺陷影响;腐蚀300 d时,合金的阻抗谱呈多容抗弧特征,较高溶解氧含量下的容抗弧数量较多。
增材制造是智能制造的重要组成部分。随着增材制造技术与产业的日臻成熟,为了推动增材制造产品从“可制造”到“可使用”再到“安全稳定使用”的跨越,不断促进增材制造制件在航空、航天、电子信息、医药等领域的规模化应用以及全产业链的健康稳步发展,迫切需要增材制造标准的制定与实施。系统梳理了国内外增材制造标准体系框架,总结了国内外增材制造标准发布情况,分析了国内增材制造标准化工作的发展趋势,最后通过对标国际适用的增材制造标准化体系架构和发展路线,对我国增材制造标准体系建设提出建议。
采用反应磁控溅射法在高速钢基体上制备氮原子分数分别为10.8%,15.6%,28.1%,36.4%的Ti-B-C-N薄膜,研究了氮含量对薄膜微观结构、硬度和摩擦磨损性能的影响。结果表明:Ti-B-C-N薄膜均由α-Fe和Ti(C,N)纳米晶组成,具有Ti(C,N)纳米晶镶嵌在非晶基体相中的纳米复合结构;随着氮含量增加,非晶相含量增加,Ti(C,N)纳米晶的含量和晶粒尺寸减小;随着氮含量增加,Ti-B-C-N薄膜的显微硬度增大,摩擦因数和磨损率均减小,表面磨痕变浅,磨损机制由剥落和微观犁削转变为微观抛光。
黏结剂喷射因具有低成本和可控性优势而在陶瓷型芯的制备中得到广泛的应用,但制备陶瓷型芯的抗弯强度、尺寸精度和表面质量一般较低,而这些不足可以通过改变制备工艺参数来进行改进。综述了粉末、黏结剂、成形工艺和后处理工艺这4个方面的参数对陶瓷型芯抗弯强度、尺寸精度和表面质量的影响,提出了提高黏结剂喷射制备陶瓷型芯抗弯强度、尺寸精度和表面质量的未来发展方向。
钨纤维增韧钨基复合材料作为一种理想的面向等离子体材料,可以不需要引入其他合金元素,通过充分发挥钨纤维本身的优异性能而提升其韧性。对钨纤维增韧钨基复合材料的增韧机理、增韧相类型、制备方法的研究现状进行了综述,重点介绍了钨纤维表面改性、钨纤维体积分数以及烧结温度对复合材料性能的影响,指出了该复合材料今后的研究方向。
采用升降法和成组法对碲改质C70S6非调质钢进行旋转弯曲疲劳试验,研究了试样的旋转弯曲疲劳性能,分析了碲改质作用机理。结果表明:当置信度为95%,失效概率分别为10%,50%时采用升降法得到的疲劳强度分别为385.0,458.8 MPa,采用成组法时分别为379.9,432.0 MPa,两种方法所测疲劳强度均高于企业要求和未经碲改质C70S6非调质钢;试验钢中硫化物为MnS和Mn(S,Te),大多呈曲率半径小的椭球状,评级结果为细系1.5级,粗系2.0级,其尺寸小于国内未经碲改质C70S6非调质钢,与国外未经碲改质C70S6非调质钢相当;碲改质主要通过调控硫化物形态、减小硫化物尺寸来改善C70S6非调质钢的旋转弯曲疲劳性能。
以金属硝酸盐为氧化剂、甘氨酸为燃料,采用溶液燃烧法在750 ℃下制备尖晶石型(K1/6 Co1/6 Cr1/6 Fe1/6 Mn1/6 Ni1/6)3O4高熵氧化物粉体,并将该粉体用作锂离子电池负极材料,研究了燃料与氧化剂的物质的量比(0.2,0.5,1.0,1.5)对产物结构和储锂性能的影响。结果表明:所制备的高熵氧化物化学成分均匀且具有介孔结构;随着燃料与氧化剂的物质的量比的增加,高熵氧化物的结晶度、晶格常数、晶胞体积、比表面积和孔体积均增大,晶粒尺寸先减小后增大,最可几孔径先减小后增大再减小;当燃料与氧化剂的物质的量比为0.5和1.0时,所制备的粉体具有相似的比表面积和类似的孔结构,但是前者具有更小的晶粒尺寸和最可几孔径。当燃料与氧化剂的物质的量比为0.5时,制备的电极在0.2 A·g-1小电流密度下循环100圈后放电比容量最高(1 196 mA·h·g-1),这与此时电极材料具有较小的晶粒尺寸和最可几孔径以及适中的结晶度有关;当燃料与氧化剂的物质的量比为1.0时,电极具有最优的倍率性能,在1.0 A·g-1大电流密度下循环400圈后的放电比容量高达1 133 mA·h·g-1,在3 A·g-1大电流密度下的比容量保持率仍高达59.4%,这主要与较大的晶胞体积有关。
采用机械干态颗粒涂层技术分别制备了cBN@TiO2(TiO2包覆立方氮化硼)粉体和cBN@(TiO2+C)(TiO2+碳包覆立方氮化硼)粉体,然后在1 600 ℃、N2气氛下进行高温热处理制备cBN@TiN(TiN包覆立方氮化硼)粉体,研究了高温热处理前后粉体的物相组成与微观形貌以及高温反应机理。结果表明:机械干态颗粒涂层技术可以使纳米TiO2和纳米TiO2+C颗粒均匀包裹在cBN颗粒表面。在高温热处理过程中,TiO2与cBN反应生成液相B2O3,促进了cBN相变成六方氮化硼(hBN),cBN的高温稳定性差,以cBN@TiO2为原料制备的cBN@TiN粉体颗粒表面形成由TiN相和hBN相组成的片状结构层;当存在碳时,TiO2会优先与碳发生还原反应生成TiN,抑制B2O3的生成,从而降低cBN相变量,此时cBN的高温稳定性好,以cBN@(TiO2+C)为原料制备的cBN@TiN粉体颗粒表面形成主要为TiN相的颗粒结构层。
1977年创刊 月刊
ISSN 1000-3738
CN 31-1336/TB
主编:胡军
主管:上海科学院
主办:上海材料研究所有限公司